Skip to main content

Advertisement

Log in

Clinical implications of KIT and PDGFRA genotyping in GIST

  • Educational Series
  • Current Technology in Cancer Research and Treatment
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract. GISTs are characterised by the expression of KIT, a type III tyrosine kinase receptor, and the presence of mutations in KIT or PDGFRA in about 80–85% of cases. The primary treatment for GIST is surgery, which cures most patients with low- or intermediate-risk tumours. The introduction of the kinase inhibitor imatinib mesylate, and sunitinib in second line, against KIT and PDGFRA has provided the first evidence of directed therapy in GIST. The aim of this review is to highlight the growing evidence that KIT and PDGFRA genotyping provides valuable information for the clinical management of GIST patients. We show that KIT and PDGFRA genotyping has emerged as one of the principal factors in the evaluation of GISTs, particularly in those tumours that are clearly malignant or have a high risk of recurrence. In addition to helping establish the diagnosis of GIST in unusual cases, genotyping can be very useful to physicians and patients in deciding on imatinib dose, in estimating the likelihood and duration of benefit, and potentially in selecting second-line therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirota S, Isozaki K, Moriyama Y et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    Article  CAS  PubMed  Google Scholar 

  2. Heinrich MC, Corless CL, Duensing A et al (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299:708–710

    Article  CAS  PubMed  Google Scholar 

  3. Reichardt P, Hogendoorn PC, Tamborini E et al (2009) Gastrointestinal stromal tumors I: pathology, pathobiology, primary therapy, and surgical issues. Semin Oncol 36:290–301

    Article  CAS  PubMed  Google Scholar 

  4. Lasota J, Miettinen M (2008) Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology 53:245–266

    Article  CAS  PubMed  Google Scholar 

  5. Corless CL, Heinrich MC (2008) Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol Mech Dis 3:557–586

    Article  CAS  Google Scholar 

  6. Joensuu H, Roberts PJ, Sarlomo-Rikala M et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056

    Article  CAS  PubMed  Google Scholar 

  7. Demetri GD (2002) Identification and treatment of chemoresistant inoperable or metastatic GIST: experience with the selective tyrosine kinase inhibitor imatinib mesylate (ST 1571). Eur J Cancer 38:552–559

    Article  Google Scholar 

  8. Heinrich MC, Owzar K, Corless CL et al (2008) Correlation of kinase genotype and clinical out come in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol 26:5360–5367

    Article  CAS  PubMed  Google Scholar 

  9. Debiec-Rychter M, Sciot R, Le Cesne A et al (2006) KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumors. Results of mutation analysis in 377 patients entered into a randomized study. Eur J Cancer 42:1093–1103

    Article  CAS  PubMed  Google Scholar 

  10. Rubin BP, Heinrich MC, Corless CL (2007) Gastrointestinal stromal tumour. Lancet 369:1731–1741

    Article  CAS  PubMed  Google Scholar 

  11. Martin J, Poveda A, Llombart-Bosch A et al (2005) Spanish Group for Sarcoma Research. Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol 23:6190–6198

    Article  CAS  PubMed  Google Scholar 

  12. Corless CL, Fletcher JA, Heinrich MC (2004) Biology of gastrointestinal stromal tumors. J Clin Oncol 22:3813–3825

    Article  CAS  PubMed  Google Scholar 

  13. Lasota J, Wozniak A, Sarlomo-Rikala M et al (2000) Mutations in exon 9 and exon 13 of KIT gene are rare events in gastrointestinal stromal tumors. A study of 200 cases. Am J Pathol 157:1091–1095

    Google Scholar 

  14. Antonescu CR, Sommer G, Sarran L et al (2003) Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res 9:3329–3337

    CAS  PubMed  Google Scholar 

  15. Sakurai S, Oguni S, Hironaka M et al (2001) Mutations in c-kit gene exons 9 and 13 in gastrointestinal stromal tumors among Japanese. Jpn J Cancer Res 92:494–498

    CAS  PubMed  Google Scholar 

  16. Lux ML, Rubin BP, Biase TL et al (2000) KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol 156:791–795

    CAS  PubMed  Google Scholar 

  17. Corless CL, Schroeder A, Griffith D et al (2005) PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib: Signal transduction. J Clin Oncol 23:5357–5364

    Article  CAS  PubMed  Google Scholar 

  18. Tarn C, Rink L, Merkel E et al (2008) Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci U S A 105:8387–8392

    Article  CAS  PubMed  Google Scholar 

  19. Agaimy A, Terracciano LM, Dirnhofer S et al (2009) V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol 62:613–616

    Article  CAS  PubMed  Google Scholar 

  20. Pauls K, Merkelbach-Bruse S, Thal D et al (2005) PDGFR and c-kit-mutated gastrointestinal stromal tumours (GISTs) are characterized by distinctive histological and immunohistochemical features. Histopathology 46:166–175

    Article  CAS  PubMed  Google Scholar 

  21. Casali PG, Blay JY (2010) Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21[Suppl 5]:v98–v102

    Article  PubMed  Google Scholar 

  22. Aparicio T, Boige V, Sabourin JC et al (2004) Prognostic factors after complete resection of primary gastrointestinal stromal tumors. Eur J Surg Oncol 30:1101–1106

    Article  Google Scholar 

  23. Emory TS, Sobin LH, Lukes L et al (1999) Prognosis of gastrointestinal smooth-muscle (stromal) tumors: dependence on anatomic site. Am J Surg Pathol 23:82–87

    Article  CAS  PubMed  Google Scholar 

  24. Fletcher CD, Berman JJ, Corless C et al (2002) Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 33:459–465

    Article  PubMed  Google Scholar 

  25. Miettinen M, Lasota J (2006) Pathology and prognosis of gastrointestinal stromal tumors at different sites. Semin Diagn Pathol 23:70–83

    Article  PubMed  Google Scholar 

  26. Ernst SI, Hubbs AE, Przygodzki RM et al (1998) KIT mutation portends poor prognosis in gastrointestinal stromal/smooth muscle tumors. Lab Invest 78:1633–1636

    CAS  PubMed  Google Scholar 

  27. Lasota J, Jasinski M, Sarlomo-Rikala M et al (1999) Mutations in exon 11 of c-kit occur preferentially in malignant versus benign GISTs and do not occur in leiomyomas or leiomyosarcomas. Am J Pathol 154:53–60

    CAS  PubMed  Google Scholar 

  28. Taniguchi M, Nishida T, Hirota S et al (1999) Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res 59:4297–4300

    CAS  PubMed  Google Scholar 

  29. Singer S, Rubin BP, Lux ML et al (2002) Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol 20:3898–3905

    Article  CAS  PubMed  Google Scholar 

  30. Kim T, Lee H, Kang YK et al (2004) Prognostic significance of c-kit mutation in localized gastrointestinal stromal tumors. Clin Cancer Res 10:3076–3081

    Article  CAS  PubMed  Google Scholar 

  31. Wardelmann E, Losen I, Hans V et al (2003) Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int J Cancer 106:887–895

    Article  CAS  PubMed  Google Scholar 

  32. Schneider-Stock R, Boltze C, Lasota J et al (2003) High prognostic value of p16INK4 alterations in gastrointestinal stromal tumors. J Clin Oncol 21:1688–1697

    Article  CAS  PubMed  Google Scholar 

  33. Iesalnieks I, Rümmele P, Dietmaier W et al (2005) Factors associated with disease progression in patients with gastrointestinal stromal tumors in the pre-imatinib era. Am J Clin Pathol 124:740–748

    Article  PubMed  Google Scholar 

  34. Tzen CY, Wang MN, Mau BL (2008) Spectrum and prognostication of KIT and PDGFRA mutation in gastrointestinal stromal tumors. Eur J Surg Oncol 34:563–568

    CAS  PubMed  Google Scholar 

  35. Dematteo RP, Gold JS, Saran L et al (2008) Tumor mitotic rate, size, and location independently predict recurrence after resection of primary gastrointestinal stromal tumor (GIST). Cancer 112:608–615

    Article  PubMed  Google Scholar 

  36. Martin-Broto J, Gutierrez A, Garcia-del-Muro X et al (2010) Prognostic time dependence of deletions affecting codons 557 and/or 558 of KIT gene for relapse-free survival (RFS) in localized GIST: a Spanish Group for Sarcoma Research (GEIS) Study. Ann Oncol 21:1552–1557

    Article  CAS  PubMed  Google Scholar 

  37. Corless CL, Ballman KV, Antonescu C et al (2010) Relation of tumor pathologic and molecular features to outcome after surgical resection of localized primary gastrointestinal stromal tumor (GIST): results of the intergroup phase III trial ACOSOG Z9001. J Clin Oncol 28[15s]:10006

    Google Scholar 

  38. Debiec-Rychter M, Dumez H, Judson I et al (2004) EORTC Soft Tissue and Bone Sarcoma Group. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 40:689–695

    Article  CAS  PubMed  Google Scholar 

  39. Heinrich MC, Maki RG, Corless CL et al (2008) Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 26:5352–5359

    Article  CAS  PubMed  Google Scholar 

  40. Gastrointestinal Stromal Tumor Meta-Analysis Group (MetaGIST) (2010) Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J Clin Oncol 28:1247–1253

    Article  Google Scholar 

  41. Hirota S, Ohashi A, Nishida T et al (2003) Gainof-function mutations of platelet-derived growth factor receptor a gene in gastrointestinal stromal tumors. Gastroenterology 125:660–667

    Article  CAS  PubMed  Google Scholar 

  42. Weisberg E, Wright RD, Jingrui J et al (2006) Effects of PKC412, nilotinib, and imatinib against GIST-associated PDGFRA mutants with differential imatinib sensitivity. Gastroenterology 131:1734–1742

    Article  CAS  PubMed  Google Scholar 

  43. Agaram NP, Wong GC, Guo T et al (2008) Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 47:853–859

    Article  CAS  PubMed  Google Scholar 

  44. Antonescu CR, Besmer P, Guo T et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11:4182–4190

    Article  CAS  PubMed  Google Scholar 

  45. Wardelmann E, Merkelbach-Bruse S, Pauls K et al (2006) Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors undertreatment with imatinib mesylate. Clin Cancer Res 12:1743–1749

    Article  CAS  PubMed  Google Scholar 

  46. Heinrich MC, Corless CL, Blanke CD et al (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24:4764–4774

    Article  CAS  PubMed  Google Scholar 

  47. Liegl B, Kepten I, Le C et al (2008) Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol 216:64–74

    Article  CAS  PubMed  Google Scholar 

  48. Demetri GD, van Oosterom AT, Garrett CR et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:1329–1338

    Article  CAS  PubMed  Google Scholar 

  49. Demetri GD, Heinrich MC, Fletcher JA et al (2009) Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin Cancer Res 15:5902–5909

    Article  CAS  PubMed  Google Scholar 

  50. Prenen H, Cools J, Mentens N et al (2006) Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin Cancer Res 12:2622–2627

    Article  CAS  PubMed  Google Scholar 

  51. Gajiwala KS, Wu JC, Christensen J et al (2009) KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci U S A 106:1542–1547

    Article  CAS  PubMed  Google Scholar 

  52. Maurel J, Martins AS, Poveda A et al (2010) Imatinib plus low-dose doxorubicin in patients with advanced gastrointestinal stromal tumors refractory to high-dose imatinib: a phase I-II study by the Spanish Group for Research on Sarcomas. Cancer 116:3692–3701

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Martín-Broto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Broto, J., Rubio, L., Alemany, R. et al. Clinical implications of KIT and PDGFRA genotyping in GIST. Clin Transl Oncol 12, 670–676 (2010). https://doi.org/10.1007/s12094-010-0576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0576-7

Keywords

Navigation