Skip to main content

Advertisement

Log in

Advances in the therapy of gastroenteropancreatic-neuroendocrine tumours (GEP-NETs)

  • Educational Series
  • Advances in Clinical Management and Therapy of Cancer
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Neuroendocrine tumours (NET) of the digestive tract comprise a broad range of malignancies. The therapeutic approach to these tumours has not evolved as it did in other tumour types in the last two decades. The deeper knowledge of the underlying molecular biology behind the growth of neuroendocrine cells has brought much information to light. We now know that somatostatin analogues may not only be considered as symptomatic treatment but also as antitumour agents. Sunitinib, a tyrosine kinase (TK) inhibitor with antiangiogenic and antitumoural properties, has been shown to induce significant improvement in progression-free survival in a randomised trial conducted in well-differentiated pancreatic islet-cell NETs. The relevance of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway seems to be crucial in gastroenteropancreatic (GEP)-NETs. In fact, mTOR inhibitors have shown activity in uncontrolled trials, and large, randomised trial results will be available shortly. In this article, we summarise the most recent available data on medical therapy for GEPNETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Modlin IM, Oberg K, Chung DC et al (2008) Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 9:61–72

    Article  CAS  PubMed  Google Scholar 

  2. Modlin IM, Lye KD, Kidd M (2003) A 5-decade analysis of 13,715 carcinoid tumors. Cancer 97:934–959

    Article  PubMed  Google Scholar 

  3. Oberndorfer S (1907) Karcinoide Tumoren des Dünndarms. Frank Z Pathol 1:426–432

    Google Scholar 

  4. Modlin IM, Kidd M, Pfragner R et al (2006) The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab 91:2340–2348

    Article  CAS  PubMed  Google Scholar 

  5. Yao JC, Hassan M, Phan A et al (2008) One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 26:3063–3072

    Article  PubMed  Google Scholar 

  6. Reidy DL, Tang LH, Saltz LB (2009) Treatment of advanced disease in patients with well-differentiated neuroendocrine tumors. Nat Clin Pract Oncol 6:143–152

    Article  CAS  PubMed  Google Scholar 

  7. Tomassetti P, Migliori M, Lalli S et al (2001) Epidemiology, clinical features and diagnosis of gastroenteropancreatic endocrine tumours. Ann Oncol 12[Suppl 2]:95–99

    Article  Google Scholar 

  8. Hauso O, Gustafsson BI, Kidd M et al (2008) Neuroendocrine tumor epidemiology: contrasting Norway and North America. Cancer 113:2655–2664

    Article  PubMed  Google Scholar 

  9. Hemminki K, Li X (2001) Incidence trends and risk factors of carcinoid tumors: a nationwide epidemiologic study from Sweden. Cancer 92:2204–2210

    Article  CAS  PubMed  Google Scholar 

  10. Lepage C, Rachet B, Coleman MP (2007) Survival from malignant digestive endocrine tumors in England and Wales: a population-based study. Gastroenterology 132:899–904

    Article  PubMed  Google Scholar 

  11. Garcia-Carbonero R, Capdevila J, Crespo-Herrero G et al (2010) Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): results from the National Cancer Registry of Spain (RGETNE) Ann Oncol. doi: 10.1093/annonc/mdq022

  12. Metz DC, Jensen RT (2008) Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 135:1469–1492

    Article  CAS  PubMed  Google Scholar 

  13. Capella C, Heitz PU, Höfler H et al (1995) Revised classification of neuroendocrine tumours of the lung, pancreas and gut. Virchows Arch 425:547–560

    Article  CAS  PubMed  Google Scholar 

  14. Pape UF, Jann H, Müller-Nordhorn J et al (2008) Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer 113:256–265

    Article  PubMed  Google Scholar 

  15. Klöppel G, Perren A, Heitz PU (2004) The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci 1014:13–27

    Article  PubMed  Google Scholar 

  16. Klöppel G, Rindi G, Perren A et al (2010) The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: a statement. Virchows Arch 456:595–597

    Article  PubMed  Google Scholar 

  17. Bruns C, Weckbecker G, Raulf F et al (1994) Molecular pharmacology of somatostatin-receptor subtypes. Ann N Y Acad Sci 733:138–146

    Article  CAS  PubMed  Google Scholar 

  18. Lambert P, Minghini A, Pincus W et al (1996) Treatment and prognosis of primary malignant small bowel tumors. Am Surg 62:709–715

    CAS  PubMed  Google Scholar 

  19. Patel YC (1997) Molecular pharmacology of somatostatin receptor subtypes. J Endocrinol Invest 20:348–367

    CAS  PubMed  Google Scholar 

  20. Bauer W, Briner U, Doepfner W et al (1982) SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31:1133–1140

    Article  CAS  PubMed  Google Scholar 

  21. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198

    Article  CAS  PubMed  Google Scholar 

  22. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ (1996) Octreotide. N Engl J Med 334:246–254

    Article  CAS  PubMed  Google Scholar 

  23. Arnold R, Simon B, Wied M (2000) Treatment of neuroendocrine GEP tumours with somatostatin analogues: a review. Digestion 62[Suppl 1]:84–91

    Article  CAS  PubMed  Google Scholar 

  24. Grass P, Marbach P, Bruns C, Lancranjan I (1996) Sandostatin LAR (microencapsulated octreotide acetate) in acromegaly: pharmacokinetic and pharmacodynamic relationships. Metabolism 45[Suppl 1]:27–30

    Article  CAS  PubMed  Google Scholar 

  25. Caron P, Beckers A, Cullen DR et al (2002) Efficacy of the new long-acting formulation of lanreotide (lanreotide Autogel) in the management of acromegaly. J Clin Endocrinol Metab 87:99–104

    Article  CAS  PubMed  Google Scholar 

  26. Kvols LK, Moertel CG, O’Connell MJ et al (1986) Treatment of the malignant carcinoid syndrome. Evaluation of a long-acting somatostatin analogue. N Engl J Med 315:663–666

    CAS  Google Scholar 

  27. Janson ET, Oberg K (1993) Long-term management of the carcinoid syndrome. Treatment with octreotide alone and in combination with alphainterferon. Acta Oncol 32:225–229

    Article  CAS  PubMed  Google Scholar 

  28. Arnold R, Trautmann ME, Creutzfeldt W et al (1996) Somatostatin analogue octreotide and inhibition of tumour growth in metastatic endocrine gastroenteropancreatic tumours. Gut 38:430–438

    Article  CAS  PubMed  Google Scholar 

  29. Saltz L, Trochanowski B, Buckley M et al (1993) Octreotide as an antineoplastic agent in the treatment of functional and nonfunctional neuroendocrine tumors. Cancer 72 244–248

    Article  CAS  PubMed  Google Scholar 

  30. Garland J, Buscombe JR, Bouvier C et al (2003) Sandostatin LAR (long-acting octreotide acetate) for malignant carcinoid syndrome: a 3-year experience. Aliment Pharmacol Ther 17:437–444

    Article  CAS  PubMed  Google Scholar 

  31. Faiss S, Räth U, Mansmann U et al (1999) Ultra-high-dose lanreotide treatment in patients with metastatic neuroendocrine gastroenteropancreatic tumors. Digestion 60:469–476

    Article  CAS  PubMed  Google Scholar 

  32. Ruszniewski P, Ducreux M, Chayvialle JA et al (1996) Treatment of the carcinoid syndrome with the long-acting somatostatin analogue lanreotide: a prospective study in 39 patients. Gut 39:279–283

    Article  CAS  PubMed  Google Scholar 

  33. Wymenga AN, Eriksson B, Salmela PI et al (1999) Efficacy and safety of prolonged-release lanreotide in patients with gastrointestinal neuroendocrine tumors and hormone-related symptoms. J Clin Oncol 17:1111

    CAS  PubMed  Google Scholar 

  34. Ricci S, Antonuzzo A, Galli L et al (2000) Long-acting depot lanreotide in the treatment of patients with advanced neuroendocrine tumors. Am J Clin Oncol 23:412–415

    Article  CAS  PubMed  Google Scholar 

  35. Ducreux M, Ruszniewski P, Chayvialle JA et al (2000) The antitumoral effect of the long-acting somatostatin analog lanreotide in neuroendocrine tumors. J Gastroenterol 95:3276–3281

    CAS  Google Scholar 

  36. Ruszniewski P, Ish-Shalom S, Wymenga M et al (2004) Rapid and sustained relief from the symptoms of carcinoid syndrome: results from an open 6-month study of the 28-day prolonged-release formulation of lanreotide. Neuroendocrinology 80:244–251

    Article  CAS  PubMed  Google Scholar 

  37. O’Toole D, Ducreux M, Bommelaer G et al (2000) Treatment of carcinoid syndrome: a prospective crossover evaluation of lanreotide versus octreotide in terms of efficacy, patient acceptability, and tolerance. Cancer 88:770–776

    Article  PubMed  Google Scholar 

  38. Vitale G, van Koetsveld PM, de Herder WW et al (2009) Effects of type I interferons on IGF-mediated autocrine/paracrine growth of human neuroendocrine tumor cells. Am J Physiol Endocrinol Metab 296:E559–E566

    Article  CAS  PubMed  Google Scholar 

  39. Pestka S (1987) Advances in cancer: interferon — achievements and potential. N J Med 84(1):51–56

    CAS  PubMed  Google Scholar 

  40. Rosewicz S, Detjen K, Scholz A, von Marschall Z (2004) Interferon-alpha: regulatory effects on cell cycle and angiogenesis. Neuroendocrinology 80[Suppl 1]:85–93

    Article  CAS  PubMed  Google Scholar 

  41. Hofland LJ, de Herder WW, Waaijers M et al (1999) Interferon-alpha-2a is a potent inhibitor of hormone secretion by cultured human pituitary adenomas. J Clin Endocrinol Metab 84:3336–3343

    Article  CAS  PubMed  Google Scholar 

  42. Oberg K, Funa K, Alm G (1983) Effects of leukocyte interferon on clinical symptoms and hormone levels in patients with mid-gut carcinoid tumors and carcinoid syndrome. N Engl J Med 309:129–133

    CAS  PubMed  Google Scholar 

  43. Moertel CG, Rubin J, Kvols LK (1989) Therapy of metastatic carcinoid tumor and the malignant carcinoid syndrome with recombinant leukocyte A interferon. J Clin Oncol 7:865–868

    CAS  PubMed  Google Scholar 

  44. Plöckinger U, Wiedenmann B (2007) Neuroendocrine tumors. Biotherapy. Best Pract Res Clin Endocrinol Metab 21:145–162

    Article  Google Scholar 

  45. Kölby L, Persson G, Franzén S, Ahrén B (2003) Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br J Surg 90:687–693

    Article  PubMed  Google Scholar 

  46. Faiss S, Pape UF, Böhmig M et al (2003) Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors — the International Lanreotide and Interferon Alfa Study Group. J Clin Oncol 21:2689–2696

    Article  CAS  PubMed  Google Scholar 

  47. Arnold R, Rinke A, Klose KJ et al (2005) Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: a randomized trial. Clin Gastroenterol Hepatol 3:761–771

    Article  CAS  PubMed  Google Scholar 

  48. Fazio N, de Braud F, Delle Fave G, Oberg K (2007) Interferon-alpha and somatostatin analog in patients with gastroenteropancreatic neuroendocrine carcinoma: single agent or combination? Ann Oncol 18:13–19

    Article  CAS  PubMed  Google Scholar 

  49. Moertel CG, Kvols LK, O’Connell MJ, Rubin J (1991) Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer 68:227–232

    Article  CAS  PubMed  Google Scholar 

  50. Hainsworth JD, Spigel DR, Litchy S, Greco FA (2006) Phase II trial of paclitaxel, carboplatin, and etoposide in advanced poorly differentiated neuroendocrine carcinoma: a Minnie Pearl Cancer Research Network Study. J Clin Oncol 24:3548–3554

    Article  CAS  PubMed  Google Scholar 

  51. Mitry E, Baudin E, Ducreux M et al (1999) Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin. Br J Cancer 81:1351–1355

    Article  CAS  PubMed  Google Scholar 

  52. Chan JA, Kulke MH (2009) Progress in the treatment of neuroendocrine tumors. Curr Oncol Rep 11:193–199

    Article  PubMed  Google Scholar 

  53. Engstrom PF, Lavin PT, Moertel CG, Folsch E, Douglass HO Jr (1984) Streptozocin plus fluorouracil versus doxorubicin therapy for metastatic carcinoid tumor. J Clin Oncol 2:1255–1259

    CAS  PubMed  Google Scholar 

  54. Bukowski RM, Tangen CM, Peterson RF, et al (1994) Phase II trial of dimethyltriazenoimidazole carboxamide in patients with metastatic carcinoid. A Southwest Oncology Group study. Cancer 73:1505–1508

    Article  CAS  PubMed  Google Scholar 

  55. Ansell SM, Pitot HC, Burch PA et al (2001) A Phase II study of high-dose paclitaxel in patients with advanced neuroendocrine tumors. Cancer 91:1543–1548

    Article  CAS  PubMed  Google Scholar 

  56. Kulke MH, Kim H, Stuart K et al (2004) A phase II study of docetaxel in patients with metastatic carcinoid tumors. Cancer Invest 22:353–359

    Article  CAS  PubMed  Google Scholar 

  57. Kulke MH, Kim H, Clark JW et al (2004) A Phase II trial of gemcitabine for metastatic neuroendocrine tumors. Cancer 101:934–939

    Article  CAS  PubMed  Google Scholar 

  58. Ansell SM, Mahoney MR, Green EM, Rubin J (2004) Topotecan in patients with advanced neuroendocrine tumors: a phase II study with significant hematologic toxicity. Am J Clin Oncol 27:232–235

    Article  CAS  PubMed  Google Scholar 

  59. Ekeblad S, Sundin A, Janson ET et al (2007) Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin Cancer Res 13:2986–2991

    Article  CAS  PubMed  Google Scholar 

  60. Chan JA, Zhu AX, Stuart K et al (2010) Phase II study of pemetrexed in patients with advanced neuroendocrine tumors. Cancer Chemother Pharmacol [Epub ahead of print]

  61. Basu B, Sirohi B, Corrie P (2010) Systemic therapy for neuroendocrine tumours of gastroenteropancreatic origin. Endocr Relat Cancer 17:R75–R90

    Article  CAS  PubMed  Google Scholar 

  62. Moertel CG, Hanley JA, Johnson LA (1980) Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N Engl J Med 303:1189–1194

    CAS  PubMed  Google Scholar 

  63. Moertel CG, Lefkopoulo M, Lipsitz S et al (1992) Streptozocin-doxorubicin, streptozocin-fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N Engl J Med 326:519–523

    CAS  PubMed  Google Scholar 

  64. Rougier P, Oliveira J, Ducreux M et al (1991) Metastatic carcinoid and islet cell tumours of the pancreas: a phase II trial of the efficacy of combination chemotherapy with 5-fluorouracil, doxorubicin and cisplatin. Eur J Cancer 27:1380–1382

    Article  CAS  PubMed  Google Scholar 

  65. Bajetta E, Rimassa L, Carnaghi C et al (1998) 5-Fluorouracil, dacarbazine, and epirubicin in the treatment of patients with neuroendocrine tumors. Cancer 83:372–378

    Article  CAS  PubMed  Google Scholar 

  66. Strosberg JR, Choi J, Gardner N, Kvols L (2008) First-line treatment of metastatic pancreatic endocrine carcinomas with capecitabine and temozolomide. J Clin Oncol 26:[Suppl] (Abstr 4612)

  67. Sun W, Lipsitz S, Catalano P et al (2005) Eastern Cooperative Oncology Group. Phase II/III study of doxorubicin with fluorouracil compared with streptozocin with fluorouracil or dacarbazine in the treatment of advanced carcinoid tumors: Eastern Cooperative Oncology Group Study E1281. J Clin Oncol 23:4897–4904

    Article  CAS  PubMed  Google Scholar 

  68. Oberg K (2010) Cancer: antitumor effects of octreotide LAR, a somatostatin analog. Nat Rev Endocrinol 6:188–189

    Article  CAS  PubMed  Google Scholar 

  69. Adams RL, Adams IP, Lindow SW et al (2005) Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium. Br J Cancer 92:1493–1498

    Article  CAS  PubMed  Google Scholar 

  70. Mentlein R, Eichler O, Forstreuter F, Held-Feindt J (2001) Somatostatin inhibits the production of vascular endothelial growth factor in human glioma cells. Int J Cancer 92:545–550

    Article  CAS  PubMed  Google Scholar 

  71. Elliott DE, Li J, Blum AM et al (1999) SSTR2A is the dominant somatostatin receptor subtype expressed by inflammatory cells, is widely expressed and directly regulates T cell IFN-gamma release. Eur J Immunol 29:2454–2463

    Article  CAS  PubMed  Google Scholar 

  72. Zhang SQ, Yang W, Kontaridis MI et al (2004) Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13:341–355

    Article  PubMed  Google Scholar 

  73. Rinke A, Müller HH, Schade-Brittinger C et al (2009) Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 27:4656–4663

    Article  CAS  PubMed  Google Scholar 

  74. Schmid HA (2008) Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol 286:69–74

    Article  CAS  PubMed  Google Scholar 

  75. Schmid HA, Schoeffter P (2004) Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology 80[Suppl 1]:47–50

    Article  CAS  PubMed  Google Scholar 

  76. Kvols L, Öberg K, O’Dorisio TM et al (2010) Efficacy, safety and pharmacokinetic results from a phase ii study of pasireotide (SOM230) in the treatment of patients with metastatic NETs refractory or resistant to octreotide LAR. Presented at European Neuroendocrine Tumor Society (ENETS) Annual Conference, March 2010, Berlin, Germany

  77. Srirajaskanthan R, Watkins J, Marelli L et al (2009) Expression of somatostatin and dopamine 2 receptors in neuroendocrine tumours and the potential role for new biotherapies. Neuroendocrinology 89:308–314

    Article  CAS  PubMed  Google Scholar 

  78. Jaquet P, Gunz G, Saveanu A et al (2005) BIM- 23A760, a chimeric molecule directed towards somatostatin and dopamine receptors, vs universal somatostatin receptors ligands in GH-secreting pituitary adenomas partial responders to octreotide. J Endocrinol Invest 28[Suppl]:21–27

    CAS  PubMed  Google Scholar 

  79. Peverelli E, Olgiati L, Locatelli M et al (2010) The dopamine-somatostatin chimeric compound BIM-23A760 exerts antiproliferative and cytotoxic effects in human non-functioning pituitary tumors by activating ERK1/2 and p38 pathways. Cancer Lett 288:170–176

    Article  CAS  PubMed  Google Scholar 

  80. Zhang J, Jia Z, Li Q et al (2007) Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 109:1478–1486

    Article  CAS  PubMed  Google Scholar 

  81. Yao JC (2007) Neuroendocrine tumors. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract Res Clin Endocrinol Metab 21:163–172

    Article  CAS  PubMed  Google Scholar 

  82. Missiaglia E, Dalai I, Barbi S et al (2010) Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 28:245–255

    Article  CAS  PubMed  Google Scholar 

  83. Yao JC, Phan A, Hoff PM et al (2008) Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol 26:1316–1323

    Article  CAS  PubMed  Google Scholar 

  84. Kunz PL, Kuo T, Kaiser HL et al (2008) A phase II study of capecitabine, oxaliplatin, and bevacizumab for metastatic or unresectable neuroendocrine tumors: preliminary results. J Clin Oncol 26[Suppl] (Abstr 15502)

  85. Venook AP, Ko AH, Tempero MA et al (2008) Phase II trial of FOLFOX plus bevacizumab in advanced, progressive neuroendocrine tumors. J Clin Oncol 26[Suppl] (Abstr 15545)

  86. Christensen JG (2007) A preclinical review of sunitinib, a multitageted receptor tyrosine kinase inhibitor with anti-angiogenic and antitumor activities. Ann Oncol 18[Suppl 10]:3–10

    Article  Google Scholar 

  87. Faivre S, Demetri G, Sargent W, Raymond E (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6:734–745

    Article  CAS  PubMed  Google Scholar 

  88. Raymond E, Faivre S, Hammel P, Ruszniewski P (2009) Sunitinib paves the way for targeted therapies in neuroendocrine tumors. Target Oncol 4:253–254

    Article  PubMed  Google Scholar 

  89. Faivre S, Delbaldo C, Vera K et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35

    Article  CAS  PubMed  Google Scholar 

  90. Kulke MH, Lenz HJ, Meropol NJ et al (2008) Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol 26:3403–3410

    Article  CAS  PubMed  Google Scholar 

  91. Raymond E, Niccoli-Sire P, Bang Y et al (2010) Updated results of the phase III trial of sunitinib (SU) versus placebo (PBO) for treatment of advanced pancreatic neuroendocrine tumors (NET). Paper presented at the 2010 gastrointestinal cancers symposium [Abstract 127]

  92. Vinik A, Bang Y, Raoul J et al (2010) Patient-reported outcomes (PROs) in patients (pts) with pancreatic neuroendocrine tumors (NET) receiving sunitinib (SU) in a phase III trial. J Clin Oncol 28[Suppl] (Abstr 4003)

  93. Raymond E, Niccoli P, Raoul J et al (2010) Cox proportional hazard analysis of sunitinib (SU) efficacy across subgroups of patients (pts) with progressive pancreatic neuroendocrine tumors (NET). J Clin Oncol 28[Suppl] (Abstr 4031)

  94. Karhoff D, Sauer S, Schrader J et al (2007) Rap1/B-Raf signaling is activated in neuroendocrine tumors of the digestive tract and Raf kinase inhibition constitutes a putative therapeutic target. Neuroendocrinology 85:45–53

    Article  CAS  PubMed  Google Scholar 

  95. Strumberg D, Richly H, Hilger RA et al (2005) Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23:965–972

    Article  CAS  PubMed  Google Scholar 

  96. Hobday TJ, Rubin J, Holen K et al (2007) MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): A Phase II Consortium (P2C) study. J Clin Oncol. 2007 ASCO Annual Meeting Proceedings Part I 18[Suppl]:4504

    Google Scholar 

  97. Hurwitz HI, Dowlati A, Saini S et al (2009) Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res 15:4220–4227

    Article  CAS  PubMed  Google Scholar 

  98. Sternberg CN, Davis ID, Mardiak J et al (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28:1061–1068

    Article  CAS  PubMed  Google Scholar 

  99. Phan AT, Yao JC, Fogelman DR et al (2010) Pazopanib and depot octreotide (sandostatin LAR) in advanced low-grade neuroendocrine carcinoma (LGNEC). J Clin Oncol 28[Suppl] (Abstr 4001)

  100. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28:1075–1083

    Article  CAS  PubMed  Google Scholar 

  101. Duran I, Kortmansky J, Singh D et al (2006) A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer 95:1148–1154

    Article  CAS  PubMed  Google Scholar 

  102. Grozinsky-Glasberg S, Franchi G, Teng M et al (2008) Octreotide and the mTOR inhibitor RAD001 (everolimus) block proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuro-endocrine tumour cell Line. Neuroendocrinology 87:168–181

    Article  CAS  PubMed  Google Scholar 

  103. Yao JC, Phan AT, Chang DZ et al (2008) Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol 26:4311–4318

    Article  PubMed  Google Scholar 

  104. Yao JC, Lombard-Bohas C, Baudin E et al (2010) Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 28:69–76

    Article  CAS  PubMed  Google Scholar 

  105. Yao JC, Phan AT, Fogleman D et al (2010) Randomized run-in study of bevacizumab (B) and everolimus (E) in low- to intermediate-grade neuroendocrine tumors (LGNETs) using perfusion CT as functional biomarker. J Clin Oncol 28[Suppl] (Abstr 4002)

  106. Höpfner M, Baradari V, Huether A et al (2006) The insulin-like growth factor receptor 1 is a promising target for novel treatment approaches in neuroendocrine gastrointestinal tumours. Endocr Relat Cancer 13:135–149

    Article  PubMed  Google Scholar 

  107. Reidy DL, Hollywood E, Segal M, Saltz L (2010) Randomized run-in study of bevacizumab (B) and everolimus (E) in low- to intermediate-grade neuroendocrine tumors (LGNETs) using perfusion CT as functional biomarker. J Clin Oncol 28[Suppl] (Abstr 4163)

  108. Rothenberg ML, Tolcher AW, Sarantopoulos J et al (2009) AMG 479 monotherapy to treat patients with advanced GI carcinoid tumors: A subset analysis from the first-in-human study. Paper presented at the 2009 gastrointestinal cancers symposium (Abstract 386)

  109. Anthony LB, Loehrer PJ, Leong S et al (2010) Phase II study of cixutumumab (IMC-A12) plus depot octreotide for patients with metastatic carcinoid or islet cell carcinoma. J Clin Oncol 28[Suppl] (Abstr TPS220)

  110. Gilbert JA, Lloyd RV, Ames MM (2005) Lack of mutations in EGFR in gastroenteropancreatic neuroendocrine tumors. N Engl J Med 353:209–210

    Article  CAS  PubMed  Google Scholar 

  111. Zierhut B, Mechtler K, Gartner W et al (2004) Heat shock protein 70 (Hsp70) subtype expression in neuroendocrine tissue and identification of a neuroendocrine tumour-specific Hsp70 truncation. Endocr Relat Cancer 11:377–389

    Article  CAS  PubMed  Google Scholar 

  112. Shimakage M, Kodama K, Kawahara K et al (2009) Downregulation of drs tumor suppressor gene in highly malignant human pulmonary neuroendocrine tumors. Oncol Rep 21:1367–1372

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Grande.

Additional information

Supported by an unrestricted educational grant from MSD Oncology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grande, E., Díez, J.J., Pachón, V. et al. Advances in the therapy of gastroenteropancreatic-neuroendocrine tumours (GEP-NETs). Clin Transl Oncol 12, 481–492 (2010). https://doi.org/10.1007/s12094-010-0541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0541-5

Keywords

Navigation