Skip to main content

Advertisement

Log in

Aurora kinase inhibitors: a new class of drugs targeting the regulatory mitotic system

  • Educational Series
  • Molecular Targets in Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The present review gives a perspective on the Aurora kinase family members, their function in normal cells, their role in cancer progression as well as their potential as target for anticancer treatment. Mitosis has been an important target for anticancer therapy development, leading to some specific drugs mainly addressing Tubulines, as a key structure of the mitotic spindle. Vinca alkaloids, taxanes or epotilones are good examples of conventionally developed antimitotic agents. However, novel classes of antineoplastic drugs are being studied, targeting the regulatory system that controls functional aspects of mitosis, such as Aurora or Polo-like kinases or Kinespondin inhibitors. The specific role of the different Aurora kinase proteins as regulator enzymes of the mitotic process in normal cells is discussed. Some of the mechanisms that link Aurora overexpression with cancer are also considered. Thereafter, the clinical and preclinical development of the different Aurora kinase inhibitors is presented. This is nowadays a very active area of therapeutic research and at least, sixteen new compounds are being studied as potential antineoplastic drugs. Most of them are in a very early phase of clinical development. However, we summarized the most recently published findings related with these drugs: main characteristics, way of administration, dose limiting toxicities and recommended doses for further studies. Another important aspect in Aurora kinase inhibition is the study and validation of potential biomarkers to optimize the clinical development. Several studies included pharmacodynamic assessments in normal blood cells, skin or/and tumor biopsies. Several proposals included a higher mitotic index, a decreased number of mitosis with bipolar spindles or normal alignment of chromosomes and inhibition of histone H3 phosphorylation. Future strategies and challenges for trials with Aurora kinase inhibitors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. The origin of malignant tumours. Fischer Verlag, Jena

    Google Scholar 

  2. Nigg EA (2001) Mitotic kinases as regulators of cell division and checkpoints. Nat Rev Moll Cell Biol 2:21–32

    Article  CAS  Google Scholar 

  3. Weaver B, Cleveland D (2005) Decoding the links between mitosis, cancer and chemotherapy: the mitotic checkpoint, adaptation and cell death. Cancer Cell 8:7–12

    Article  CAS  PubMed  Google Scholar 

  4. Kirschner MW (1978) Microtubule assembly and nucleation. Int Rev Cytol 54:1–71

    Article  CAS  PubMed  Google Scholar 

  5. Edelman M (2009) Novel taxane formulations and microtubule-binding agents in non-small-cell lung cancer. Clin Lung Cancer 10:S30–S34

    Article  CAS  PubMed  Google Scholar 

  6. Farrel KW, Wilson L (1984) Tubulin-colchine complexes differentially poison opposite microtubule ends. Biochemistry 23:3741–3748

    Article  Google Scholar 

  7. Dumontet C, Sikic B (1999) Mechanism of action of and resistance to antitubulin agents: microtubule dynamics, drug transport and cell death. J Clin Oncol 17:1061–1070

    CAS  PubMed  Google Scholar 

  8. Ringel I, Horwitz SB (1991) Studies with RP56967 (Taxotere): a semysinthetic analog of taxol. J Natl Cancer Inst 83:288–291

    Article  CAS  PubMed  Google Scholar 

  9. Cortes J, Baselga J (2007) Targeting the microtubules in breast cancer beyond taxanes: the epothilones. Oncologist 12:271–280

    Article  CAS  PubMed  Google Scholar 

  10. Nettles JH, Li H, Cornett B (2004) The binding mode of epothilone A on alfa, beta-tubulin by electron crystallography. Science 305:866–869

    Article  CAS  PubMed  Google Scholar 

  11. Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842–854

    Article  CAS  PubMed  Google Scholar 

  12. Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nat Rev 4:927–936

    CAS  Google Scholar 

  13. Marumoto T, Zwang D, Saya H (2005) Aurora-A a guardian of poles. Nat Rev 5:42–50

    CAS  Google Scholar 

  14. Hirota T, Kunitoku N, Sasayam T et al (2003) Aurora-A and interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114:585–598

    Article  CAS  PubMed  Google Scholar 

  15. Marumoto T, Honda S, Hara T et al (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278:51786–51795

    Article  CAS  PubMed  Google Scholar 

  16. Wittmann T, Boleti H, Antony C et al (2000) Localization of the kinesin-like protein XKLP2 to spindle poles requires a leucine zipper, a microtubule-associated protein and dynein. J Cell Biol 149:1405–1418

    Article  CAS  PubMed  Google Scholar 

  17. Karsenti E, Vernos I (2001) The mitotic spindle: a self-made machine. Science 294:543–547

    Article  CAS  PubMed  Google Scholar 

  18. Wittmann T, Wilm M, Karsenti E, Vernos I (2000) TPX2, a novel Xenopus MAP involved in spindle pole organization. J Cell Biol 149:1405–1418

    Article  CAS  PubMed  Google Scholar 

  19. Tsai MY, Wiese C, Cao K et al (2003) A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5:242–248

    Article  CAS  PubMed  Google Scholar 

  20. Ditchfield C, Johnson VL, Tighe A et al (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161:267–280

    Article  CAS  PubMed  Google Scholar 

  21. Hauf S, Cole RW, LaTerra S et al (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294

    Article  CAS  PubMed  Google Scholar 

  22. Kunitoku N, Sasayana T, Marumoto T et al (2003) CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 5:853–864

    Article  CAS  PubMed  Google Scholar 

  23. Zhang D, Hirota T, Marumoto T et al (2004) CreloxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene 23:8720–8730

    Article  CAS  PubMed  Google Scholar 

  24. Honda K, Mihara H, Kato Y et al (2000) Degradation of human Aurora2 protein kinase by the anaphase-promoting complex ubiquitin-proteasome pathway. Oncogene 19:2812–2819

    Article  CAS  PubMed  Google Scholar 

  25. Walter AO, Seghezzi W, Korver W et al (2000) The mitotic serine/threonine kinase Auora2/AIK is regulated by phosphorylation/dephosphorylation and degradation. Oncogene 19:4906–4916

    Article  CAS  PubMed  Google Scholar 

  26. Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155:1147–1157

    Article  CAS  PubMed  Google Scholar 

  27. Andrews PD, Knatko E, Moore WJ, Swedlow JR (2003) Mitotic mechanics: the auroras come into view. Curr Opin Cell Biol 15:672–683

    Article  CAS  PubMed  Google Scholar 

  28. Giet R, Glover DM (2001) Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensing recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152:669–682

    Article  CAS  PubMed  Google Scholar 

  29. Hans F, Dimitrov S (2001) Histone H3 phosphorylation and cell division. Oncogene 20:3021–3027

    Article  CAS  PubMed  Google Scholar 

  30. Murata-Hori M, Wang YL (2002) The kinase activity of Aurora B is required for kinetochoremicrotubule interactions during mitosis. Curr Biol 12:894–899

    Article  CAS  PubMed  Google Scholar 

  31. Carvajal RD, Tse A, Schwartz GK (2006) Aurora kinases: new targets for cancer therapy. Clin Cancer Res 12:6869–6875

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka TU, Rachidi N, Janke C et al (2002) Evidence that the lpl1-15 (Aurora kinase-INCENP) complex promotes chromosome biorientation by altering kinetochore-spindle pole connections. Cell 108:317–329

    Article  CAS  PubMed  Google Scholar 

  33. Kimura M, Matsuda Y, Yoshioka T, Oyano Y (1999) Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274:7334–7340

    Article  CAS  PubMed  Google Scholar 

  34. Sasai K, Katayama H, Stenoeien DL et al (2004) Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskeleton 59:249–263

    Article  CAS  PubMed  Google Scholar 

  35. Gritsko TM, Coppola D, Paciga JE et al (2003) Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res 9:1420–1426

    CAS  PubMed  Google Scholar 

  36. Li D, Zhu J, Firozi PF et al (2003) Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res 9:991–997

    CAS  PubMed  Google Scholar 

  37. Sakakura C, Hagiwara A, Yasuoka R et al (2001) Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer 84:824–831

    Article  CAS  PubMed  Google Scholar 

  38. Jeng YM, Peng SY, Lin CY, Hsu HC (2004) Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 10: 2065–2071

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka T, Kimura M, Matsunaga K et al (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59:2041–2044

    CAS  PubMed  Google Scholar 

  40. Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53 -/- cells. EMBO J 21:483–492

    Article  CAS  PubMed  Google Scholar 

  41. Ewart-Toland A, Dai Q, Gao YT et al (2005) Aurora A/STK15 T+91A is a general low penetrance cancer susceptibility gene: a metanalysis of multiple cancers. Carcinogenesis 26:1368–1373

    Article  CAS  PubMed  Google Scholar 

  42. Carvalho B, Postma C, Mongera S et al (2009) Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut 58:79–89

    Article  CAS  PubMed  Google Scholar 

  43. Ota T, Suto S, Katayama H et al (2002) Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res 62:5168–5177

    CAS  PubMed  Google Scholar 

  44. Macarulla T, Ramos FJ, Tabernero J (2008) Aurora kinases: a new target for anticancer drug development. In: Bronchud MH, Foote MA, Giaccone G et al (eds) Principles of molecular oncology, 3rd edn. Humana Press, New Jersey, pp 307–315

    Google Scholar 

  45. Gautschi O, Heighway J, Mack PC et al (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14:1639–1648

    Article  CAS  PubMed  Google Scholar 

  46. Warner SL, Muñoz RM, Stafford P et al (2006) Comparing aurora A and aurora B as molecular targets for growth inhibition of pancreatic cancer cells. Mol Cancer Ther 5:2450–2458

    Article  CAS  PubMed  Google Scholar 

  47. Girdler F, Gascoigne KE, Eyers PA et al (2006) Validating aurora B as an anticancer drug target. J Cell Sci 119:3664–3675

    Article  CAS  PubMed  Google Scholar 

  48. Goto H, Yasui Y, Kawajiri A et al (2003) Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278:8526–8530

    Article  CAS  PubMed  Google Scholar 

  49. Kallio MJ, McClelland ML, Stukenberg PT, Gorbsky GJ (2002) Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol 12:900–905

    Article  CAS  PubMed  Google Scholar 

  50. Murata-Hori M, Wang YL (2002) The kinase activity of aurora B is required for kinetochoremicrotubule interactions during mitosis. Curr Biol 12:894–899

    Article  CAS  PubMed  Google Scholar 

  51. Glover DM, Leibowitz MH, MacLean DA, Parry H (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81:95–105

    Article  CAS  PubMed  Google Scholar 

  52. Ewart-Toland A, Briassouli P, De Koning JP et al (2003) Identification of STK6/STK15 as a candidate low-penetrance tumor susceptibility gene in mouse and human. Nat Genet 34:403–412

    Article  CAS  PubMed  Google Scholar 

  53. Katayama H, Sasai K, Kawai H et al (2004) Phosphorylation of Aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36:55–62

    Article  CAS  PubMed  Google Scholar 

  54. Nair J, Tse A, Keen N, Schwartz G (2004) A Novel Aurora B kinase inhibitor with potent anticancer activity either as a single agent or in combination with chemotherapy. J Clin Oncol 22:14S (suppl; abstract 9568)

    Google Scholar 

  55. Sessa F, Mapelli M, Ciferri C et al (2005) Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Moll Cell 18:379–391

    Article  CAS  Google Scholar 

  56. Gadea BB, Ruderman JV (2005) Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus Egg extracts. Mol Biol Cell 16:1305–1318

    Article  CAS  PubMed  Google Scholar 

  57. Georgieva I, Koychev D, Wang Y et al (2009) ZM447439, a novel promising aurora kinase inhibitor, provokes antiproliferative and proapoptotic effects alone and in combination with chemotherapeutic agents in gastropancreatic neuroendocrine tumors cell lines. Neuroendocrinology (epub ahead of print)

  58. Harrington EA, Bebbington D, Moore J et al (2004) VX-680 a potent and selective small-molecule inhibitor of the Aurora kinases suppresses tumor growth in vivo. J Nat Med 10:252–257

    Google Scholar 

  59. Tyler RK, Shapiro N, Marquez R, Eyers PA (2007) VX-680 inhibits Aurora A and Aurora B kinase activity in human cells. Cell Cycle 6:2846–2854

    CAS  PubMed  Google Scholar 

  60. Rubin EH, Shapiro GI, Stein MN et al (2006) A phase I clinical and pharmacokinetic (PK) trial of the aurora kinase (AK) inhibitor MK-0457 in cancer patients. J Clin Oncol 24:123s (suppl; abstract 3009)

    Article  Google Scholar 

  61. Carpinelli P, Ceruti R, Giorgini ML et al (2007) PHA-739358, a potent inhibitor of aurora kinases with a selective target inhibition profile relevant to cancer. Mol Cancer Ther 6:3158–3168

    Article  CAS  PubMed  Google Scholar 

  62. De Jonge M (2006) A phase I dose-escalation study of PHA-735358 administered as a 6-hour infusion on days 1, 8 and 15 every 4 weeks in patients with advanced/metastatic solid tumours. VIII Congress of the Italian Association of Medical Oncology (AIOM), November, Milan, Italy

  63. Steeghs N, Eskens F, Gelderblom H et al (2009) Phase I pharmacokinetic and pharmacodynamic study of the Aurora kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J Clin Oncol 27:5094–5101

    Article  CAS  PubMed  Google Scholar 

  64. Manfredi MG, Ecsedy JA, Meetze KA et al (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci USA 104:4106–4111

    Article  CAS  PubMed  Google Scholar 

  65. Hoar HM, Wysong DR, Ecsedy JA (2005) MLN8054 selectively inhibits Aurora A over Aurora B in cultured human tumor cells. Proc AACR-NCI-EORTC International Conference (abstract C40)

  66. Huck J, Zhang M, Burenkova O et al (2006) Preclinical antitumor activity with MLN8054, a small molecule Aurora A kinase inhibitor. Proc AACRNCI-EORTC International Conference 47:1104 (abstract 4698)

    Google Scholar 

  67. Cervantes A, Macarulla T, Rosello S et al (2008) MLN8054, a selective inhibitor of Aurora A kinase: final results of a phase I clinical trial. Eur J Cancer 6:12S (suppl; abstract 279)

    Google Scholar 

  68. Dees EC, Infante J, Cohen RB et al (2008) Phase I and pharmacokinetics study of MLN8054, a selective inhibitor of Aurora A kinase. Eur J Cancer 6:12S (suppl; abstract 281)

    Google Scholar 

  69. Macarulla T, Rodriguez-Braun E, Tabernero J et al (2009) Phase I pharmacokinetic and pharmacodynamic study of the selective aurora A kinase inhibitor MLN8054 in patients with advanced solid tumors. J Clin Oncol 27:15s (suppl abstract 2578)

    Article  Google Scholar 

  70. Cervantes-Ruiperez A, Elez ME, Roselló S et al (2009) Phase I pharmacokinetic and pharmacodynamic study of MLN8237, a novel selective aurora A kinase inhibitor in patients with advanced solid tumours. J Clin Oncol 17:15s (suppl; abstract 2565)

    Google Scholar 

  71. Helfrich B, Garcia M, Haney J, Bunn PA (2008) The selective Aurora B kinase inhibitor AZD1152 inhibits in vitro growth in small cell lung cancer cell lines. Eur J Cancer 6:12S (suppl; abstract 288)

    Google Scholar 

  72. Schellens JH, Boss D, Witteveen PO et al (2006) Phase I and pharmacological study of the novel aurora kinase inhibitor AZD1152. J Clin Oncol 24:18S (suppl; abstract 3008)

    Article  Google Scholar 

  73. Tentler J, Pierce ELB, Serkova NJ et al (2008) ENMD-2076 exerts antiangiogenic and antiproliferative activity against human colorectal cancer xenografts models. Eur J Cancer 6:12S (suppl; abstract 284)

    Google Scholar 

  74. Yee KW, Brandwein J, Minden MD et al (2009) A phase I study of ENMD-2076 in patients with relapsed or refractory acute myeloid leukemia. Proc AACR-NCI-EORTC International Conference; Abstract 106

  75. Bastos BR, Diamond J, Hansen R et al (2009) An open-label, dose escalation, safety and pharmacokinetic study of ENMD-2076 administered orally to patients with advanced cancer. J Clin Oncol 27:15s (suppl; abstr 3520)

    Article  Google Scholar 

  76. Chung G, Kendall R, Geuns-Meyer S, Payton M (2009) In vitro characterization of AMG 900, an orally active small molecule inhibitor of aurora kinases in phase I clinical trials. Proc AACRNCI-EORTC International Conference; abstract 261

  77. Schoffski P, Dumez H, Jones SF et al (2008) Preliminary results of a Phase I accelerated dose-escalation, pharmacokinetic and pharmacodynamic study of PF-03814736, an oral Aurora kinase A and B inhibitor, in patients with advanced solid tumors. Eur J Cancer 6:12S (suppl; abstr 282)

    Google Scholar 

  78. Robert F, Vershraegen C, Hurwitz H et al (2009) A phase I trial of SNS-314, a novel and selective pan-aurora kinase inhibitor in advanced solid tumor patients. J Clin Oncol 27:15s (suppl; abstr 2536)

    Article  Google Scholar 

  79. Renshaw JS, Patnaik A, Gordon M et al (2007) A phase I two arm trial of AS703569 (R763), an orally available aurora kinase inhibitor, in subjects with solid tumors: preliminary results. J Clin Oncol 25:18S (suppl; abstr 14130)

    Google Scholar 

  80. Kristeleit R, Calvert H, Arkenau H et al (2009) A phase I of AT9283, an aurora kinase inhibitor, in patients with refractory solid tumors. J Clin Oncol 27:15s (suppl; abstr 2566)

    Article  Google Scholar 

  81. Smith DC, Britten C, Clary DO et al (2009) A phase I study of XL228, a potent IGF1R/AURORA/ SRC inhibitor, in patients with solid tumors or hematologic malignancies. J Clin Oncol 27:15s (suppl; abstr 3512)

    Article  Google Scholar 

  82. Wang X, Zhang S, Chen L et al (2008) Preclinical activity of ENMD-981693, an inhibitor of Aurora A kinase and multiple receptor tyrosine kinases, against multiple myeloma cells. J Clin Oncol 26:20s (suppl; abstr 8609)

    Article  Google Scholar 

  83. Pratz KW, Stine A, Karp J et al (2008) Optimizing the dose and schedule of KW-2449 FLT3/Aurora inhibitor, through analysis of in vivo target inhibition. J Clin Oncol 26:20s (suppl; abstr 7069)

    Article  Google Scholar 

  84. Teicher B (2008) Newer cytotoxic agents: attacking cancer broadly. Clin Cancer Res 14:1610–1617

    Article  CAS  PubMed  Google Scholar 

  85. Fasolo A, Sessa C (2009) Translational research in phase I trials. Clin Transl Oncol 11:580–588

    Article  PubMed  Google Scholar 

  86. Giles FJ, Cortes J, Jones D et al (2007) MK-0457; a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109:500–502

    Article  CAS  PubMed  Google Scholar 

  87. Gontarewicz A, Balabanov S, Keller G et al (2008) Simultaneous targeting of Aurora kinases and BCR-ABL kinase by the small molecule inhibitor PHA-738358 is effective against imatinib-resistant BCR-ABL, including T315I. Blood 111:4355–4364

    Article  CAS  PubMed  Google Scholar 

  88. Failes TW, Mitic G, Abdel-Halim H et al (2009) Mechanisms of resistance to Aurora kinase B in leukemia: development and characterization in vitro. Proc AACR-NCI-EORTC International Conference; Abstract 156

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by an unrestricted educational grant from Pfizer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez Fidalgo, J.A., Roda, D., Roselló, S. et al. Aurora kinase inhibitors: a new class of drugs targeting the regulatory mitotic system. Clin Transl Oncol 11, 787–798 (2009). https://doi.org/10.1007/s12094-009-0447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-009-0447-2

Keywords

Navigation