Skip to main content

Advertisement

Log in

Molecular mechanisms behind the resistance of cisplatin in germ cell tumours

  • Educational Series
  • Molecular and Cellular Biology of Cancer
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cisplatin has been one of the principal chemotherapy agents for the last 30 years and is still used widely in the treatment of testicular, ovarian, lung, head and neck, bladder and several other tumours. Resistance to chemotherapeutic agents is a major obstacle for successful treatment. Treatment effect on germ cell tumours (GCTs) is more successful than in adults suffering from almost any other solid tumour, but resistance still appears in 20% of patients with metastatic disease. However, because of the young age of patients and few data regarding the process of becoming resistant, this situation is still a challenge. In this review we are going to analyse the published literature on cisplatin resistance in GCTs and explain the initiatives that the Spanish Germ Cell Cancer Group (GG) is taking to try to elucidate the molecular mechanisms behind this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oosterhuis JW, Looijenga LH (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5:210–222

    Article  CAS  PubMed  Google Scholar 

  2. Krege S, Beyer J, Souchon R et al (2008) European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I. Eur Urol 53:478–496

    Article  PubMed  Google Scholar 

  3. Krege S, Beyer J, Souchon R et al (2008) European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): part II. Eur Urol 53:497–513

    Article  PubMed  Google Scholar 

  4. Germa-Lluch JR, Garcia del Muro X, Maroto P et al (2002) Clinical pattern and therapeutic results achieved in 1490 patients with germ-cell tumours of the testis: the experience of the Spanish Germ-Cell Cancer Group (GG). Eur Urol 42:553–562; discussion 562–563

    Article  CAS  PubMed  Google Scholar 

  5. Kelland L (2007) The resurgence of platinumbased cancer chemotherapy. Nat Rev Cancer 7:573–584

    Article  CAS  PubMed  Google Scholar 

  6. Stevens LC, Little CC (1954) Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci U S A 40:1080–1087

    Article  CAS  PubMed  Google Scholar 

  7. Youngren KK, Coveney D, Peng X et al (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435:360–364

    Article  CAS  PubMed  Google Scholar 

  8. Walt H, Oosterhuis JW, Stevens LC (1993) Experimental testicular germ cell tumorigenesis in mouse strains with and without spontaneous tumours differs from development of germ cell tumours of the adult human testis. Int J Androl 16:267–271

    Article  CAS  PubMed  Google Scholar 

  9. Atkin NB, Baker MC (1982) Specific chromosome change, i(12p), in testicular tumours? Lancet 2:1349

    Article  CAS  PubMed  Google Scholar 

  10. Looijenga LH, Olie RA, van der Gaag I et al (1994) Seminomas of the canine testis. Counterpart of spermatocytic seminoma of men? Lab Invest 71:490–496

    CAS  PubMed  Google Scholar 

  11. Piulats JM, Vidal A, Nadal M et al (2006) Development of a human testicular germ cell tumor model in athymic mice. AACR Meeting Abstracts (#649)

  12. Castillo-Avila W, Piulats JM, Garcia Del Muro X et al (2009) Sunitinib inhibits tumor growth and synergizes with cisplatin in orthotopic models of cisplatin-sensitive and cisplatin-resistant human testicular germ cell tumors. Clin Cancer Res 15:3384–3395

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberg B, Vancamp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699

    Article  CAS  PubMed  Google Scholar 

  14. Oosterhuis JW, Andrews PW, Knowles BB et al (1984) Effects of cis-platinum on embryonal carcinoma cell lines in vitro. Int J Cancer 34:133–139

    Article  CAS  PubMed  Google Scholar 

  15. Cairns J (2002) Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci U S A 99:10567–10570

    Article  CAS  PubMed  Google Scholar 

  16. Hong Y, Stambrook PJ (2004) Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci U S A 101:14443–14448

    Article  CAS  PubMed  Google Scholar 

  17. Kersemaekers AM, Mayer F, Molier M et al (2002) Role of P53 and MDM2 in treatment response of human germ cell tumors. J Clin Oncol 20:1551–1561

    Article  CAS  PubMed  Google Scholar 

  18. Masters JR, Koberle B (2003) Curing metastatic cancer: lessons from testicular germ-cell tumours. Nat Rev Cancer 3:517–525

    Article  CAS  PubMed  Google Scholar 

  19. Koberle B, Masters JR, Hartley JA et al (1999) Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr Biol 9:273–276

    Article  CAS  PubMed  Google Scholar 

  20. Zamble DB, Mikata Y, Eng CH et al (2002) Testis-specific HMG-domain protein alters the responses of cells to cisplatin. J Inorg Biochem 91: 451–462

    Article  CAS  PubMed  Google Scholar 

  21. Spierings DC, de Vries EG, Vellenga E et al (2003) The attractive Achilles heel of germ cell tumours: an inherent sensitivity to apoptosis-inducing stimuli. J Pathol 200:137–148

    Article  CAS  PubMed  Google Scholar 

  22. Schenk PW, Stoop H, Bokemeyer C et al (2004) Resistance to platinum-containing chemotherapy in testicular germ cell tumors is associated with downregulation of the protein kinase SRPK1. Neoplasia 6:297–301

    Article  CAS  PubMed  Google Scholar 

  23. Kelland LR, Mistry P, Abel G et al (1992) Mechanism-related circumvention of acquired cisdiamminedichloroplatinum(II) resistance using two pairs of human ovarian carcinoma cell lines by ammine/amine platinum(IV) dicarboxylates. Cancer Res 52:3857–3864

    CAS  PubMed  Google Scholar 

  24. Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67:1171–1176

    CAS  PubMed  Google Scholar 

  25. Ishida S, Lee J, Thiele DJ et al (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 99:14298–14302

    Article  CAS  PubMed  Google Scholar 

  26. Holzer AK, Howell SB (2006) The internalization and degradation of human copper transporter 1 following cisplatin exposure. Cancer Res 66:10944–10952

    Article  CAS  PubMed  Google Scholar 

  27. Borst P, Evers R, Kool M et al (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302

    Article  CAS  PubMed  Google Scholar 

  28. Scheffer GL, Schroeijers AB, Izquierdo MA et al (2000) Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr Opin Oncol 12:550–556

    Article  CAS  PubMed  Google Scholar 

  29. Zurita AJ, Diestra JE, Condom E et al (2003) Lung resistance-related protein as a predictor of clinical outcome in advanced testicular germ-cell tumours. Br J Cancer 88:879–886

    Article  CAS  PubMed  Google Scholar 

  30. Mayer F, Stoop H, Scheffer GL et al (2003) Molecular determinants of treatment response in human germ cell tumors. Clin Cancer Res 9:767–773

    CAS  PubMed  Google Scholar 

  31. Kool M, de Haas M, Scheffer GL et al (1997) Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 57:3537–3547

    CAS  PubMed  Google Scholar 

  32. Safaei R, Holzer AK, Katano K et al (2004) The role of copper transporters in the development of resistance to Pt drugs. J Inorg Biochem 98:1607–1613

    Article  CAS  PubMed  Google Scholar 

  33. Samimi G, Safaei R, Katano K et al (2004) Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res 10:4661–4669

    Article  CAS  PubMed  Google Scholar 

  34. Jansen BA, Brouwer J, Reedijk J (2002) Glutathione induces cellular resistance against cationic dinuclear platinum anticancer drugs. J Inorg Biochem 89:197–202

    Article  CAS  PubMed  Google Scholar 

  35. Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17:463–468

    Article  CAS  PubMed  Google Scholar 

  36. Masters JR, Thomas R, Hall AG et al (1996) Sensitivity of testis tumour cells to chemotherapeutic drugs: role of detoxifying pathways. Eur J Cancer 32A:1248–1253

    Article  CAS  PubMed  Google Scholar 

  37. Koropatnick J, Kloth DM, Kadhim S et al (1995) Metallothionein expression and resistance to cisplatin in a human germ cell tumor cell line. J Pharmacol Exp Ther 275:1681–1687

    CAS  PubMed  Google Scholar 

  38. Sark MW, Timmer-Bosscha H, Meijer C et al (1995) Cellular basis for differential sensitivity to cisplatin in human germ cell tumour and colon carcinoma cell lines. Br J Cancer 71:684–690

    CAS  PubMed  Google Scholar 

  39. Meijer C, Timmer A, De Vries EG et al (2000) Role of metallothionein in cisplatin sensitivity of germ-cell tumours. Int J Cancer 85:777–781

    Article  CAS  PubMed  Google Scholar 

  40. Johnson SW, Swiggard PA, Handel LM et al (1994) Relationship between platinum-DNA adduct formation and removal and cisplatin cytotoxicity in cisplatin-sensitive and -resistant human ovarian cancer cells. Cancer Res 54:5911–5916

    CAS  PubMed  Google Scholar 

  41. Reed E (1998) Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat Rev 24:331–344

    Article  CAS  PubMed  Google Scholar 

  42. Koberle B, Roginskaya V, Zima KS et al (2008) Elevation of XPA protein level in testis tumor cells without increasing resistance to cisplatin or UV radiation. Mol Carcinog 47:580–586

    Article  CAS  PubMed  Google Scholar 

  43. Honecker F, Mayer F, Stoop H et al (2003) Xeroderma pigmentosum group a protein and chemotherapy resistance in human germ cell tumors. Lab Invest 83:1489–1495

    Article  CAS  PubMed  Google Scholar 

  44. Azambuja AA, Viola LS, Piccoli J et al (2008) ERCC1 expression is a predictor of clinical outcome in germ cell tumors treated with standard cisplatin based chemotherapy. ASCO Meeting Abstracts (#16013)

  45. Hernandez CH (2008) Role of XPA, ERCC1, mt-TFA on the survival of patients with metastatic germ cell tumors of testis treated with cisplatin. ASCO Meeting Abstracts (#5090)

  46. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  CAS  PubMed  Google Scholar 

  47. Aebi S, Kurdi-Haidar B, Gordon R et al (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res 56:3087–3090

    CAS  PubMed  Google Scholar 

  48. Lage H, Dietel M (1999) Involvement of the DNA mismatch repair system in antineoplastic drug resistance. J Cancer Res Clin Oncol 125:156–165

    Article  CAS  PubMed  Google Scholar 

  49. Lothe RA, Peltomaki P, Tommerup N et al (1995) Molecular genetic changes in human male germ cell tumors. Lab Invest 73:606–614

    CAS  PubMed  Google Scholar 

  50. Devouassoux-Shisheboran M, Mauduit C, Bouvier R et al (2001) Expression of hMLH1 and hMSH2 and assessment of microsatellite instability in testicular and mediastinal germ cell tumours. Mol Hum Reprod 7:1099–1105

    Article  CAS  PubMed  Google Scholar 

  51. Mayer F, Gillis AJ, Dinjens W et al (2002) Microsatellite instability of germ cell tumors is associated with resistance to systemic treatment. Cancer Res 62:2758–2760

    CAS  PubMed  Google Scholar 

  52. Honecker F, Wermann H, Mayer F et al (2009) Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J Clin Oncol 27:2129–2136

    Article  CAS  PubMed  Google Scholar 

  53. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  54. Houldsworth J, Xiao H, Murty VV et al (1998) Human male germ cell tumor resistance to cisplatin is linked to TP53 gene mutation. Oncogene 16:2345–2349

    Article  CAS  PubMed  Google Scholar 

  55. Mayer F, Honecker F, Looijenga LH et al (2003) Towards an understanding of the biological basis of response to cisplatin-based chemotherapy in germ-cell tumors. Ann Oncol 14:825–832

    Article  CAS  PubMed  Google Scholar 

  56. Chresta CM, Masters JR, Hickman JA (1996) Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax:Bcl-2 ratio. Cancer Res 56:1834–1841

    CAS  PubMed  Google Scholar 

  57. Burger H, Nooter K, Boersma AW et al (1998) Expression of p53, Bcl-2 and Bax in cisplatininduced apoptosis in testicular germ cell tumour cell lines. Br J Cancer 77:1562–1567

    CAS  PubMed  Google Scholar 

  58. Baltaci S, Orhan D, Turkolmez K et al (2001) P53, bcl-2 and bax immunoreactivity as predictors of response and outcome after chemotherapy for metastatic germ cell testicular tumours. BJU Int 87:661–666

    Article  CAS  PubMed  Google Scholar 

  59. Rao PH, Houldsworth J, Palanisamy N et al (1998) Chromosomal amplification is associated with cisplatin resistance of human male germ cell tumors. Cancer Res 58:4260–4263

    CAS  PubMed  Google Scholar 

  60. Wilson C, Yang J, Strefford JC et al (2005) Overexpression of genes on 16q associated with cisplatin resistance of testicular germ cell tumor cell lines. Genes Chromosomes Cancer 43:211–216

    Article  CAS  PubMed  Google Scholar 

  61. Noel EE, Perry J, Chaplin T et al (2008) Identification of genomic changes associated with cisplatin resistance in testicular germ cell tumor cell lines. Genes Chromosomes Cancer 47:604–613

    Article  CAS  PubMed  Google Scholar 

  62. Piulats JM, Nadal M, Martinez-Iniesta M et al (2009) Nude mice model of primary human nonseminoma germ cell tumors to study biology and resistance to cisplatin treatment. ASCO Meeting Abstracts (#e16143)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Germà-Lluch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piulats, J.M., Jiménez, L., García del Muro, X. et al. Molecular mechanisms behind the resistance of cisplatin in germ cell tumours. Clin Transl Oncol 11, 780–786 (2009). https://doi.org/10.1007/s12094-009-0446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-009-0446-3

Keywords

Navigation