Skip to main content

Advertisement

Log in

Hypofractionated radiotherapy for localised prostate cancer. Review of clinical trials

  • Educational Series
  • Current Technology in Cancer Research and Treatment
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Over the last 10 years the radiobiology of prostate cancer has been studied both in experimental research and in clinical trials of hypofractionated radiotherapy. Unlike most cancers, the α/β ratio of the prostatic carcinoma is probably lower than that of the healthy organs around the gland, although there is no agreement as to how low this α/β really is. This peculiarity implies that, theoretically, a hypofractionated schedule would increase the therapeutic gain of radiotherapy. Until now, following four published randomised trials, hypofractionated radiotherapy has shown results in terms of acute and chronic toxicity and tumour control similar to those obtained with conventionally fractionated radiotherapy. However, these studies are not conclusive. The two studies that involved significant follow-up used 2D technique and delivered low total equivalent dose. On the other hand, the two most recent trials, which administered total equivalent doses ⩾78 Gy with modern techniques (IMRT, IGRT), involved the disadvantage of small samples and a short follow-up period. The results of ongoing randomised trials are necessary to confirm the advantages of hypofractionation over normofractionated radiotherapy. The impact of hypofractionated radiotherapy on the patient’s health-related quality of life, and on transports and health care costs, should also be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lukka H, Hayter C, Julian JA et al (2005) Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol 23:6132–6138

    Article  PubMed  Google Scholar 

  2. Brenner DJ, Hall EJ (1999) Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 43:1095–1101

    Article  PubMed  CAS  Google Scholar 

  3. Pollack A, Horwitz EM, Feigenberg SJ et al (2006) Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncol Biol Phys 64:518–526

    PubMed  Google Scholar 

  4. Yeoh EE, Holloway RH, Fraser RJ et al (2006) Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: updated results of a phase III randomized trial. Int J Radiat Oncol Biol Phys 66:1072–1083

    PubMed  Google Scholar 

  5. Akimoto T, Muramatsu H, Takahashi M et al (2004) Rectal bleeding after hypofractionated radiotherapy for prostate cancer: correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding. Int J Radiat Oncol Biol Phys 60:1033–1039

    Article  PubMed  Google Scholar 

  6. Arcangeli S, Strigari L, Soete G et al (2009) Clinical and dosimetric predictors of acute toxicity after a 4-week hypofractionated external beam radiotherapy regimen for prostate cancer: results from a multicentric prospective trial. Int J Radiat Oncol Biol Phys 73:39–45

    PubMed  Google Scholar 

  7. Bahary JP, Musucci GL, Fortin MA et al (2004) Hypofractionation radiotherapy in the treatment of prostate cancer: acute and late toxicity evaluation. 90th RSNA annual meeting (personal communication)

  8. Collins CD, Loyd-Davies RW, Swan AV (1991) Radical external beam radiotherapy for localised carcinoma of the prostate using a hypofractionation technique. Clin Oncol 3:127–132

    Article  CAS  Google Scholar 

  9. Higgins GS, McLaren DB, Kerr GR et al (2006) Outcome analyses of 300 prostate cancer patients treated with neoadjuvant androgen deprivation and hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys 65:982–989

    PubMed  Google Scholar 

  10. Jereczek-Fossa BA, Cattani F, Garibaldi C et al (2007) Transabdominal ultrasonography, computed tomography and electronic portal imaging for 3-dimensional conformal radiotherapy for prostate cancer. Strahlenther Onkol 183:610–616

    Article  PubMed  Google Scholar 

  11. Junius S, Haustermans K, Bussels B et al (2007) Hypofractionated intensity modulated irradiation for localized prostate cancer, results from a phase I/II feasibility study. Radiat Oncol 2:29

    Article  PubMed  Google Scholar 

  12. Kitamura K, Shirato H, Shinohara N et al (2003) Reduction in acute morbidity using hypofractionated intensity-modulated radiation therapy assisted with a fluoroscopic real-time tumor-tracking system for prostate cancer: preliminary results of a phase I/II study. Cancer J 9:244–246

    Article  Google Scholar 

  13. Koukourakis MI, Touloupidis S, Manavis J et al (2004) Conformal hypofractionated and accelerated radiotherapy with cytoprotection (HypoARC) for high risk prostatic carcinoma: rationale, technique and early experience. Anticancer Res 24:3239–3243

    PubMed  Google Scholar 

  14. Kupelian PA, Willoughby TR, Reddy CA et al (2007) Hypofractionated intensity-modulated radiotherapy (70 gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland clinic experience. Int J Radiat Oncol Biol Phys 68:1424–1430

    PubMed  Google Scholar 

  15. Leborgne F, Fowler J (2008) Acute toxicity after hypofractionated conformal radiotherapy for localized prostate cancer: nonrandomized contemporary comparison with standard fractionation. Int J Radiat Oncol Biol Phys 72:770–776

    PubMed  Google Scholar 

  16. Lim TS, Cheung PC, Loblaw DA et al (2008) Hypofractionated accelerated radiotherapy using concomitant intensity-modulated radiotherapy boost technique for localized high-risk prostate cancer: acute toxicity results. Int J Radiat Oncol Biol Phys 72:85–92

    PubMed  Google Scholar 

  17. Livsey JE, Cowan RA, Wylie JP et al (2003) Hypofractionated conformal radiotherapy in carcinoma of the prostate: five-year outcome analysis. Int J Radiat Oncol Biol Phys 57:1254–1259

    PubMed  Google Scholar 

  18. Macias V, Garcia-Ruiz J, Girabent-Farres M (2008) Acute side effects of hypofractionated radiotherapy (HYPORT) in localised prostate cancer. Radiother Oncol 88[Suppl 2]:S478 (personal communication)

    Google Scholar 

  19. Madsen BL, His RA, Pham HT et al (2007) Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: First clinical trial results. Int J Radiat Oncol Biol Phys 67:1099–2015

    PubMed  Google Scholar 

  20. Martin JM, Rosewall T, Bayley A et al (2007) Phase II trial of hypofractionated image-guided intensity-modulated radiotherapy for localized prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 69:1084–1089

    PubMed  Google Scholar 

  21. Norkus D, Valuckas KP, Miller A et al (2005) [A preliminary safety study of hypofractionated radiotherapy for local prostate cancer]. Medicina (Kaunas) 41:1035–1041

    Google Scholar 

  22. Pawlicki T, Kim GY, Cotrutz C et al (2007) Investigation of linac-based image-guided hypofractionated prostate radiotherapy. Med Dosim 32:71–79

    Article  PubMed  Google Scholar 

  23. Soete G, Arcangeli S, De Meerler G et al (2006) Phase II study of a four-week hypofractionated external beam radiotherapy regimen for prostate cancer: report on acute toxicity. Radiother Oncol 80:78–81

    Article  PubMed  Google Scholar 

  24. Yassa M, Fortin B, Fortin MA et al (2008) Combined hypofractionated radiation and hormone therapy for the treatment of intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 71:58–63

    PubMed  Google Scholar 

  25. Fowler J, Chappell R, Ritter M (2001) Is a/b for prostate tumors really low? Int J Radiat Oncol Biol Phys 50:1021–1031

    Article  PubMed  CAS  Google Scholar 

  26. King CR, Mayo CS (2000) Is the prostrate alpha/beta ratio of 1.5 from Brenner & Hall a modeling artifact. Int J Radiat Oncol Biol Phys 47:536–539

    Article  PubMed  CAS  Google Scholar 

  27. Brenner DJ, Hall EJ (2000) In response to Drs. King and Mayo: low alpha/beta values for prostate cancer appear to be independent of modeling details. Int J Radiat Oncol Biol Phys 47:538–539

    Article  Google Scholar 

  28. Carlone M, Wilkins D, Nyiri B, Raaphorst P (2003) Comparison of alpha/beta estimates from homogeneous (individual) and heterogeneous (population) tumor control models for early stage prostate cancer. Med Phys 30:2832–2848

    Article  PubMed  Google Scholar 

  29. Carlone M, Wilkins D, Nyiri B, Raaphorst P (2004) TCP isoeffect analysis using a heterogeneous distribution of radiosensitivity. Med Phys 31:1176–1182

    Article  PubMed  Google Scholar 

  30. Moiseenko V (2004) Effect of heterogeneity in radiosensitivity on LQ based isoeffect formalism for low alpha/beta cancers. Acta Oncol 43:499–502

    Article  PubMed  Google Scholar 

  31. Wang JZ, Guerrero M, Li XA (2003) How low is the alpha/beta ratio for prostate cancer? Int J Radiat Oncol Biol Phys 55:194–203

    Article  PubMed  Google Scholar 

  32. Faria SL, Mahmud S, Wakil G et al (2006) Is there a detrimental effect of waiting for radiotherapy for patients with localized prostate cancer? Am J Clin Oncol 29:463–467

    Article  PubMed  Google Scholar 

  33. Wyatt RM, Beddoe AH, Dale RG (2003) The effects of delays in radiotherapy treatment on tumour control. Phys Med Biol 48:139–155

    Article  PubMed  CAS  Google Scholar 

  34. Miles EF, Lee WR (2008) Hypofractionation for prostate cancer: a critical review. Semin Radiat Oncol 18:41–47

    Article  PubMed  Google Scholar 

  35. Brenner DJ, Martinez AA, Edmundson GK et al (2002) Direct evidence that prostate tumors show high sensitivity to fractionation (low a/b ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 52:6–13

    PubMed  Google Scholar 

  36. Lee WR (2002) In regard to Brenner et al. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio) similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 53:1392

    Article  PubMed  Google Scholar 

  37. Dasu A (2007) Is the a/b value for prostate tumours low enough to be safely used in clinical trials? Clin Oncol 19:289–301

    Article  CAS  Google Scholar 

  38. Nahum A, Movsas B, Horwitz EM et al (2003) Incorporating clinical measurements of hypoxia into tumor local control modelling of prostate cancer: implications for the a/b ratio. Int J Radiot Oncol Biol Phys 57:391–401

    Article  Google Scholar 

  39. Valdagni R, Italia C, Montanaro P et al (2005) Is the alpha beta ratio of prostate cancer really low? A prospective, non-randomized trial comparing standard and hyperfractionated conformal radiation therapy. Radiother Oncol 75:74–82

    Article  PubMed  Google Scholar 

  40. Bentzen SM, Ritter MA (2005) The alpha/beta ratio for prostate cancer: what is it, really? Radiother Oncol 76:1–3

    Article  PubMed  Google Scholar 

  41. Williams SG, Taylor JM, Liu N et al (2007) Use of individual fraction size data from 3756 patients to directly determine the alpha/beta ratio of prostate cancer. Int J Radiat Oncol Biol Phys 68:24–33

    PubMed  Google Scholar 

  42. Fowler JF, Ritter MA, Chappell RJ, Brenner DJ (2003) What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys 56:1093–1104

    Article  PubMed  Google Scholar 

  43. Brenner DJ (2004) Fractionation and late rectal toxicity. Int J Radiat Oncol Biol Phys 60:1013–1015

    PubMed  Google Scholar 

  44. van der Kogel AJ, Jarrett KA, Paciotti MA, Raju MR (1988) Radiation tolerance of the rat rectum to fractionated X-rays and pi-mesons. Radiother Oncol 12:225–232

    Article  PubMed  Google Scholar 

  45. Deore SM, Shrivastava SK, Supe SJ et al (1993) Alpha/beta value and importance of dose per fraction for the late rectal and recto-sigmoid complications. Strahlenther Onkol 169:521–526

    PubMed  CAS  Google Scholar 

  46. Gasinska A, Dubray B, Hill SA et al (1993) Early and late injuries in mouse rectum after fractionated X-ray and neutron irradiation. Radiother Oncol 26:244–253

    Article  PubMed  CAS  Google Scholar 

  47. Dubray BM, Thames HD (1994) Chronic radiation damage in the rat rectum: an analysis of the influences of fractionation, time and volume. Radiother Oncol 33:41–47

    Article  PubMed  CAS  Google Scholar 

  48. Wang CJ, Leung SW, Chen HC et al (1998) The correlation of acute toxicity and late rectal injury in radiotherapy for cervical carcinoma: evidence suggestive of consequential late effect (CQLE). Int J Radiat Oncol Biol Phys 40:85–91

    Article  PubMed  CAS  Google Scholar 

  49. Jereczek-Fossa BA, Vavassori A, Fodor C et al (2008) Dose escalation for prostate cancer using the three-dimensional conformal dynamic arc technique: analysis of 542 consecutive patients. Int J Radiat Oncol Biol Phys 71:784–794

    PubMed  Google Scholar 

  50. Dorr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol 61:223–231

    Article  PubMed  CAS  Google Scholar 

  51. Guerrero M, Li Xa (2006) Halftome for repair of sublethal damage in normal bladder and rectum: an analysis of clinical data from cervix brachytherapy. Phys Med Biol 51:4063–4071

    Article  PubMed  Google Scholar 

  52. Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy: A review. Br J Radiol 62:679–694

    PubMed  CAS  Google Scholar 

  53. Dearnaley D, Norman AR, Syndikus I et al (2007) Conventional or hypofractionated high dose intensity modulated radiotherapy in prostate cancer (CHHIP): a phase III multicentre trial. Preliminary report on acute and late toxicity (ISRCTN97182923). The 2007 Multidisciplinary Prostate Cancer Symposium, 2007, Orlando, FL. American Society of Clinical Oncology (ASCO) Program/Proceedings, abstract No 303 (personal communication)

  54. Smit WG, Helle PA, van Putten WL et al (1990) Late radiation damage in prostate cancer patients treated by high dose external radiotherapy in relation to rectal dose. Int J Radiat Oncol Biol Phys 18:23–29

    PubMed  CAS  Google Scholar 

  55. Schultheiss TE, Hanks GE, Hunt MA, Lee WR (1995) Incidence of and factors related to late complications in conformal and conventional radiation treatment of cancer of the prostate. Int J Radiat Oncol Biol Phys 32:643–649

    Article  PubMed  CAS  Google Scholar 

  56. Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer. Int J Radiat Oncol Biol Phys 31:1341–1346

    PubMed  CAS  Google Scholar 

  57. (1995) LENT SOMA tables. Radiother Oncol 35: 17–60

  58. Demanes DJ, Rodriguez RR, Schour L et al (2005) High dose-rate intensity-modulated brachytherapy with external beam radiotherapy for prostate cancer: California endocurietherapy’s 10-year results. Int J Radiat Oncol Biol Phys 61:1306–1316

    PubMed  Google Scholar 

  59. Galalae RM, Martienz A, Nuernberg N et al (2006) Hypofractionated conformal HDR brachytherapy in hormone naïve men with localized prostate cancer. Is escalation to very high biologically equivalent dose beneficial in all prognostic risk groups? Strahlenther Onkol 3:135–141

    Article  Google Scholar 

  60. Yoshioka Y, Nose T, Yoshida K et al (2003) High-dose-rate brachytherapy as monotherapy for localized prostate cancer: a retrospective analysis with special focus on tolerance and chronictoxicity. Int J Radiat Oncol Biol Phys 56:213–220

    PubMed  Google Scholar 

  61. Yoshioka Y, Konishi K, Oh RJ et al (2006) High-dose-rate brachytherapy without external beam irradiation for locally advanced prostate cancer. Radiother Oncol 80:62–68

    Article  PubMed  Google Scholar 

  62. Akimoto T, Ito K, Saitoh J et al (2005) Acute genitourinary toxicity after high-dose (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: correlation between the uretral dose in HDR brachytherapy and the severity of acute genitourinary toxicity. Int J Radiat Oncol Biol Phys 63:463–471

    PubMed  Google Scholar 

  63. Akimoto T, Katoh H, Kitamoto Y et al (2006) Rectal bleeding after high-dose brachytherapy combined with hypofractionated external-beam radiotherapy for localized prostate cancer: impact of rectal dose in high-dose-rate brachytherapy on occurrence of grade 2 or worse rectal bleeding. Int J Radiat Oncol Biol Phys 65:364–370

    PubMed  Google Scholar 

  64. Martinez AA, Demanes DJ, Galalae R et al (2005) Lack of benefit from a short course of androgen deprivation for unfavorable prostate cancer patients treated with an accelerated hypofractionated regime. Int J Radiat Oncol Biol Phys 62:1322–1331

    PubMed  Google Scholar 

  65. Galalae RM, Loch T, Riemer B et al (2004) Health-related quality of life measurement in long-term survivors and outcome following radical radiotherapy for localized prostate cancer. Strahlenther Onkol 180:582–589

    Article  PubMed  Google Scholar 

  66. Craig T, Moiseenko V, Battista J, Van Dyk J (2003) The impact of geometric uncertainty on hpofractionated external beam radiation therapy of prostate cancer. Int J Radiat Oncol Biol Phys 57:833–842

    PubMed  Google Scholar 

  67. Song WY, Schaly B, Bauman G et al (2006) Evaluation of image-guided radiation therapy (IGRT) technologies and their impact on the outcomes of hypofractionated prostate cancer treatments: a radiobiologic analysis. Int J Radiat Oncol Biol Phys 64:289–300

    PubMed  Google Scholar 

  68. King CR, Brooks JD, Gill H et al (2009) Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys 73: 1043–1048

    PubMed  Google Scholar 

  69. Adamson J, Wu Q (2008) Prostate intrafraction motion evaluation using kV fluoroscopy during treatment delivery: a feasibility and accuracy study. Med Phys 35:1793–1806

    Article  PubMed  Google Scholar 

  70. Fiorino C, Di Muzio N, Broggi S et al (2008) Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys 71:611–617

    PubMed  Google Scholar 

  71. Hannoun-Levi JM, Benezery K, Bondiau PY et al (2007) Robotic radiotherapy for prostate cancer with CyberKnife. Cancer Radiother 11:476–482

    PubMed  Google Scholar 

  72. Ishikawa H, Tsuji H, Kamada T et al; Working Group for Genitourinary Tumors (2006) Carbon ion radiation therapy for prostate cancer: results of a prospective phase II study. Radiother Oncol 81:57–64

    Article  PubMed  Google Scholar 

  73. Fiorino C, Di Muzio N, Broggi S et al (2008) Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys 71:611–617

    PubMed  Google Scholar 

  74. Teh BS, Dong L, McGary JE et al (2005) Rectal wall sparing by dosimetric effect of rectal balloon used during intensity-modulated radiation therapy (IMRT) for prostate cancer. Med Dosim 30:25–30

    Article  PubMed  Google Scholar 

  75. Bastasch MD, Teh BS, Mai WY et al (2006) Tolerance of endorectal balloon in 396 patients treated with intensity-modulated radiation therapy (IMRT) for prostate cancer. Am J Clin Oncol 29:8–11

    Article  PubMed  Google Scholar 

  76. El-Bassiouni M, Davis JB, El-Attar I et al (2006) Target motion variability and on-line positioning accuracy during external-beam radiation therapy of prostate cancer with an endorectal balloon device. Strahlenther Onkol 182:531–536

    Article  PubMed  Google Scholar 

  77. Guckenberger M, Flentje M (2007) Intensity-modulated radiotherapy (IMRT) of localized prostate cancer: a review and future perspectives. Strahlenther Onkol 183:57–62

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Macías.

Additional information

Supported by an unrestricted educational grant from Merck Serono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macías, V., Biete, A. Hypofractionated radiotherapy for localised prostate cancer. Review of clinical trials. Clin Transl Oncol 11, 437–445 (2009). https://doi.org/10.1007/s12094-009-0382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-009-0382-2

Keywords

Navigation