Skip to main content

Advertisement

Log in

Signalling pathways involved in clinical responses to chemotherapy

  • Educational Series
  • Green Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Chemotherapeutic agents and also radiotherapy trigger a series of signalling pathways in the cells that activate not only the apoptotic machinery but also cell survival pathways. Some of these pathways are also altered by genetic changes in specific type of tumours, and are different even between patients with the same tumour. Among these pathways, the majority of survival signals involve the ERK, AKT and nuclear factor-κB pathways and those related to cell death, which are driven mainly either by inhibition of such survival networks or by upregulation of the JNK/p38 MAP-kinases. Thus, the efficacy of a given chemotherapy appears as a result of the balance between cell death and survival pathways elicited in each individual tumour. Modulation of such survival pathways would help to increase the efficacy of chemotherapy. Different strategies based on conventional chemotherapy have been used in the past with modest success. The availability of new molecules such as inhibitors of survival pathways and the use of new technologies for the study of individual tumours would have a positive impact on patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  2. Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432:338–341

    Article  PubMed  CAS  Google Scholar 

  3. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J. Pathol 205:275–292

    Article  PubMed  CAS  Google Scholar 

  4. Rickardson L, Fryknas M, Dhar S et al (2005) Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. Br J Cancer 93:483–492

    Article  PubMed  CAS  Google Scholar 

  5. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  PubMed  CAS  Google Scholar 

  6. Kruh GD (2003) Introduction to resistance to anticancer agents. Oncogene 22:7262–7264

    Article  PubMed  CAS  Google Scholar 

  7. Viatour P, Merville MP, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52

    Article  PubMed  CAS  Google Scholar 

  8. Staal SP (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A 84:5034–5037

    Article  PubMed  CAS  Google Scholar 

  9. Jones PF, Jakubowicz T, Pitossi FJ et al (1991) Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A 88:4171–4175

    Article  PubMed  CAS  Google Scholar 

  10. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355

    Article  PubMed  Google Scholar 

  11. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U SA 98:10983–10985

    Article  CAS  Google Scholar 

  12. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94:29–86

    Article  PubMed  CAS  Google Scholar 

  13. Shawver LK, Slamon D, Ullrich A (2002) Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 1:117–123

    Article  PubMed  CAS  Google Scholar 

  14. Liang K, Jin W, Knuefermann C et al (2003) Targeting the phosphatidylinositol 3-kinase/Akt pathway for enhancing breast cancer cells to radiotherapy. Mol Cancer Ther 2:353–360

    PubMed  CAS  Google Scholar 

  15. Bianco R, Shin I, Ritter CA et al (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22:2812–2822

    Article  PubMed  CAS  Google Scholar 

  16. Hu L, Hofmann J, Lu Y et al (2002) Inhibition of phosphatidylinositol 3’-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 62:1087–1092

    PubMed  CAS  Google Scholar 

  17. Mansouri A, Zhang Q, Ridgway LD et al (2003) Cisplatin resistance in an ovarian carcinoma is associated with a defect in programmed cell death control through XIAP regulation. Oncol Res 13:399–404

    PubMed  Google Scholar 

  18. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288

    Article  PubMed  CAS  Google Scholar 

  19. Jobin C, Sartor RB (2000) The IkB/NF-B system. a key determinant of mucosa inflammation and protection. Am J Physiol Cell Physiol 278:C451–C562

    PubMed  CAS  Google Scholar 

  20. Senftleben U, Cao Y, Xiao G et al (2001) Activation by IKK of a second, evolutionary conserved, NF-κB signaling pathway. Science 293:1495–1499

    Article  PubMed  CAS  Google Scholar 

  21. Romieu-Mourez R, Landesman-Bollag E, Seldin DC et al (2001) Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-kappaB in breast cancer. Cancer Res 61:3810–3818

    PubMed  CAS  Google Scholar 

  22. Mathas S, Lietz A, Janz M et al (2003) Inhibition of NF-kappaB essentially contributes to arsenic-induced apoptosis. Blood 102:1028–1034

    Article  PubMed  CAS  Google Scholar 

  23. Bava SV, Puliappadamba VT, Deepti A et al (2005) Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280:6301–6308

    Article  PubMed  CAS  Google Scholar 

  24. Li Y, Ahmed F, Ali S et al (2005) Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65:6934–6942

    Article  PubMed  CAS  Google Scholar 

  25. Mabuchi S, Ohmichi M, Nishio Y et al (2004) Inhibition of NFκB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 279:23477–23485

    Article  PubMed  CAS  Google Scholar 

  26. Patel NM, Nozaki S, Shortle NH et al (2000) Paclitaxel sensitivity of breast cancer cells with constitutively active NF-κB is enhanced by IB super-repressor and parthenoide. Oncogene 19:4159–4169

    Article  PubMed  CAS  Google Scholar 

  27. Kim DW, Sovak MA, Zanieski G et al (2000) Activation of NF-kappaB/Rel occurs early during neoplastic transformation of mammary cells. Carcinogenesis 21:871–879

    Article  PubMed  Google Scholar 

  28. Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404:892–897

    Article  PubMed  CAS  Google Scholar 

  29. Nozaki S, Sledge GW Jr, Nakshatri H (2001) Repression of GADD153/CHOP by NF-kappaB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Oncogene 20:2178–2185

    Article  PubMed  CAS  Google Scholar 

  30. Costa C, Soares R, Reis-Filho JS et al (2002) Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J Clin Pathol 55:429–434

    PubMed  CAS  Google Scholar 

  31. Zhang S, Lin ZN, Yang CF et al (2004) Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis 25:2191–2199

    Article  PubMed  CAS  Google Scholar 

  32. Weldon CB, Burow ME, Rolfe KW et al (2001) NF-kappa B-mediated chemoresistance in breast cancer cells. Surgery 130:143–150

    Article  PubMed  CAS  Google Scholar 

  33. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  PubMed  CAS  Google Scholar 

  34. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  35. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  36. Platanias LC (2003) Map kinase signaling pathways and hematologic malignancies. Blood 101:4667–4679

    Article  PubMed  CAS  Google Scholar 

  37. Bohmann D, Bos TJ, Admon A et al (1987) Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 238:1386–1392

    Article  PubMed  CAS  Google Scholar 

  38. Sánchez I, Hughes RT, Mayer BJ et al (1994) Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372:794–798

    PubMed  Google Scholar 

  39. Lin W, Kao HW, Robinson D et al (2000) Tyrosine kinases and gastric cancer. Oncogene 19:5680–5689

    Article  PubMed  CAS  Google Scholar 

  40. Wu CW, Li AF, Chi CW et al (2000) Human gastric cancer kinase profile and prognostic significance of MKK4 kinase. Am J Pathol 156:2007–2015

    PubMed  CAS  Google Scholar 

  41. Sánchez-Pérez I, Murguia JR, Perona R (1998) Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 16:533–540

    Article  PubMed  Google Scholar 

  42. Stadheim TA, Kucera GL (2002) c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for mitoxantrone-and anisomycin-induced apoptosis in HL-60 cells. Leuk Res 26:55–65

    Article  PubMed  CAS  Google Scholar 

  43. Teng DH, Perry WL 3rd, Hogan JK et al (1997) Human mitogen-activated protein kinase 4 as a candidate tumor suppressor. Cancer Res 57:4177–4182

    PubMed  CAS  Google Scholar 

  44. Su GH, Song JJ, Repasky EA et al (2002) Mutation rate of MAP2K4/MKK4 in breast carcinoma. Hum Mutat 19:81

    Article  PubMed  Google Scholar 

  45. Wada T, Joza N, Cheng HY et al (2004) MKK7 couples stress signalling to G2/M cell-cycle progression and cellular senescence. Nat Cell Biol 6:215–226

    Article  PubMed  CAS  Google Scholar 

  46. Sánchez-Pérez I, Murguia JR, Perona R (1998) Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 16:533–540

    Article  PubMed  Google Scholar 

  47. Sánchez-Pérez I, Perona R (1999) Lack of c-Jun activity increases survival to cisplatin. FEBS Lett 453:151–158

    Article  PubMed  Google Scholar 

  48. Sánchez-Pérez I, Martínez-Gomariz M, Williams D et al (2000) CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene 19:5142–5152

    Article  PubMed  Google Scholar 

  49. Sánchez-Pérez I, Benitah SA, Martínez-Gomariz M et al (2002) Cell stress and MEKK1-mediated c-Jun activation modulate NFkappaB activity and cell viability. Mol Biol Cell 13:2933–2945

    Article  PubMed  Google Scholar 

  50. Wang HY, Cheng Z, Malbon CC (2003) Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett 191:229–237

    Article  PubMed  CAS  Google Scholar 

  51. Denkert C, Schmitt WD, Berger S et al (2002) Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int J Cancer 102:507–51

    Article  PubMed  CAS  Google Scholar 

  52. Chattopadhyay S, Machado-Pinilla R, Manguan-García C, et al (2006) MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small cell lung cancer 25:3335–3345

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by an unrestricted educational grant from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perona, R., Sánchez-Pérez, I. Signalling pathways involved in clinical responses to chemotherapy. Clin Transl Oncol 9, 625–633 (2007). https://doi.org/10.1007/s12094-007-0115-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-007-0115-3

Key words

Navigation