Skip to main content

Advertisement

Log in

Mouse models in oncogenesis and cancer therapy

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Animal models have been critical in the study of the molecular mechanisms of cancer and in the development of new antitumor agents; nevertheless, there is still much room for improvement. The relevance of each particular model depends on how close it replicates the histology, physiological effects, biochemical pathways and metastatic pattern observed in the same human tumor type. Metastases are especially important because they are the main determinants of the clinical course of the disease and patient survival, and are the target of systemic therapy. The generation of clinically relevant models using the mouse requires their humanization, since differences exist in transformation and oncogenesis between human and mouse. Although genetically modified (GM) mice have been instrumental in understanding the molecular mechanisms involved in tumor initiation, they have been less successful in replicating advanced cancer. Moreover, a particular genetic alteration frequently leads to different tumor types in human and mouse and to lower metastastatic rates in GM mice than in humans. These findings question the capacity of current GM mouse carcinoma models to predict clinical response to therapy. On the other hand, orthotopic (ORT) xenografts of human tumors, or tumor cell lines, in nude mice reproduced the histology and metastatic pattern of most human tumors at advanced stage. Usingex vivo genetic manipulation of human tumor cells, ORT models can be used to molecularly dissect the metastatic process and to evaluatein vivo tumor response to therapy, using non-invasive procedures. Nevertheless, this approach is not useful in the study of the initial stages of tumorigenesis or the contribution of the immune system in this process. Despite ORT models are more promising than the most commonly used subcutaneous xenografts in preclinical drug development, their capacity to predict clinical response to antitumor agents remains to be studied. Humanizing mouse models of cancer will most likely require the combined use of currently available methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Dyke T, Jacks T. Cancer modelling in the modern era: progress and challenges. Cell. 2002;108:135–44.

    Article  PubMed  Google Scholar 

  2. Grever M, Chaner BA. The National Cancer Institute: Cancer drug discovery and development program. In: (DeVita VT, Jr., Hellman S, Rosenberg SA, eds.). Cancer principles & practice of oncology. (5th ed). Philadelphia (PA): Lippincott-Raven; 1997.

    Google Scholar 

  3. DeVita Jr VT, Hellman S, Rosenberg SA (eds.). Cancer: Principles and Practice of Oncology. 7th. Ed. Lippincott Williams & Wilkins. 2005; p. 3120.

  4. Ruoslahti E. Fibronectin and its integrin receptors in cancer. Adv Cancer Res. 1999;76:1–20.

    Article  PubMed  CAS  Google Scholar 

  5. Weber GF (ed.): Cancer Therapy: Molecular Targets in Tumor-Host Interactions. Horizon Bioscience. Editor University of Cincinnati Medical Center, Cincinnati, OH, USA. 2005; p. 398.

    Google Scholar 

  6. Hanahan, D., Weinberg RA. The hall-marks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  7. McClatchey AI. Modeling metastasis in the mouse. Oncogene. 1999;18(38):5334–9.

    Article  PubMed  CAS  Google Scholar 

  8. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976,194(4260): 23–8.

    Article  PubMed  CAS  Google Scholar 

  9. Bernards R Weinberg RA. A progression puzzle. Nature. 2002;418:823.

    Article  PubMed  CAS  Google Scholar 

  10. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 2003;33(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  11. Hunter K. Host genetics influence tumour metastasis. Nat Rev Cancer. 2006;6(2):141–6.

    Article  PubMed  CAS  Google Scholar 

  12. Khanna C, Hunter K. Modeling metastasisin vivo. Carcinogenesis. 2005;26(3):513–23.

    Article  PubMed  CAS  Google Scholar 

  13. Slack NH, Bross ID. The influence of site of metastasis on tumour growth and response to chemotherapy. Br J Cancer. 1975;32(1):78–86.

    PubMed  CAS  Google Scholar 

  14. Fidler IJ. Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metastasis Rev. 1991;10(3):229–43.

    Article  PubMed  CAS  Google Scholar 

  15. González FJ, Kimura S. Understanding the role of xenobiotic-metabolism in chemical carcinogenesis using gene knockout mice. Mutat Res. 2001;477(1–2):79–87.

    PubMed  Google Scholar 

  16. Mouse Genome Sequence Consortium, Initial sequencing and comparative analysis of the mouse genome. Nature. 2002; 420(6915):520–62.

    Article  CAS  Google Scholar 

  17. Rangarajan A, Weinberg RA. Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer. 2005;3(12):952–9.

    Article  CAS  Google Scholar 

  18. Jacks T. Tumor suppressor gene mutations in mice. Annu Rev Genet. 1996;30: 603–36.

    Article  PubMed  CAS  Google Scholar 

  19. Wagner KU. Models of breast cancer: quo vadis, animal modeling? Breast Cancer Res 2004;6(1):31–8.

    Article  PubMed  CAS  Google Scholar 

  20. Cardiff RD. Validity of mouse mammary tumour models for human breast cancer: comparative pathology. Microsc Res Tech. 2001;52(2):224–30.

    Article  PubMed  CAS  Google Scholar 

  21. Nandi S, Guzmán RC, Yang J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci USA. 1995;92(9):5650–7.

    Article  Google Scholar 

  22. Grisham JW. Interspecies comparison of liver carcinogenesis: implications for cancer risk assessment. Carcinogenesis. 1997; 18(1):59–81.

    Article  PubMed  CAS  Google Scholar 

  23. Rosol TJ, Tannehill-Gregg SH, LeRoy BE, Mandl S, Contag CH. Animal models of bone metastasis. Cancer. 2003;97(Suppl 3):S748–57.

    Article  PubMed  Google Scholar 

  24. Clarke R. Animal models of breast cancer: their diversity and role in biomedical research. Breast Cancer Res Treat. 1996; 39(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffman R. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. 2002;3(9):546–56.

    Article  PubMed  CAS  Google Scholar 

  26. Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs. 1999;17(4):343–59.

    Article  PubMed  CAS  Google Scholar 

  27. Kim JB, O'Hare MJ, Stein R. Models of breast cancer: is merging human and animal models the future? Breast Cancer Res. 2004;6(1):22–30.

    Article  PubMed  CAS  Google Scholar 

  28. Heijstek MW, Kranenburg O, Borel Rinkes IH. Mouse models of colorectal cancer and liver metastases. Dig Surg. 2005;22(1–2):16–25.

    Article  PubMed  CAS  Google Scholar 

  29. Balmain A. Cancer as a complex genetic trait: tumor susceptibility in humans and mouse models. Cell. 2002;108:145–52.

    Article  PubMed  CAS  Google Scholar 

  30. Kamb A. What's wrong with our cancer models? Nat Rev Drug Discov. 2005;4(2): 161–5.

    Article  PubMed  CAS  Google Scholar 

  31. Staquel MJ, Byar DP, Green SB, Rozencweig M. Clinical predictivity of transplantable tumor systems in the selection of new drugs for solid tumors: rationale for a three-stage strategy. Cancer Treat Rep. 1983;67(9):753–65.

    Google Scholar 

  32. Gura T. Systems for identifying new drugs are often faulty. Science. 1997;273: 1041–2.

    Article  Google Scholar 

  33. Venditti JM, Wesley RA, Plowman J. Current NCl preclinical antitumor screeningin vivo: results of tumor panel screening, 1976–1982, and future directions. Adv Pharmacol Chemother. 1984;20:1–20.

    Article  PubMed  CAS  Google Scholar 

  34. Wilmanns C, Fan D, O'Brian CA, Bucana CD, Fidler IJ. Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxoribicin and 5-fluorouracil. Int J Cancer. 1992;52:98–104.

    Article  PubMed  CAS  Google Scholar 

  35. Wilmanns C, Fan D, O'Brian CA, et al. Modulation of doxorubicin sensitivity and P-glycoprotein expression in human colon carcinoma cells by ectopic and orthotopic environments in nude mice. Int J Oncol. 1993;3:412–22.

    Google Scholar 

  36. Dong Z, Radinsky R, Fan D, Tsan R, Bucana CD, Wilmanns C, Fidler IJ. Organspecific modulation of mdr gene expression and drug resistance in murine colon cancer cells. J Natl Cancer Inst. 1994;86: 913–20.

    Article  PubMed  CAS  Google Scholar 

  37. Pratesi G, Manzotti C, Tortoreto M, Audisio RA, Zunino F Differential efficacy of flavone acetic against liver versus lung metastases in a human tumour xenograft. Br J Cancer. 1991;63(1):71–4.

    PubMed  CAS  Google Scholar 

  38. Staroselsky AN, Fan D, O'Brian CA, Bucana CD, Gupta KP, Fidler IJ. Site-dependent differences in response to the UV-2237 murine fibrosarcoma to systemic therapy with adriamycin. Cancer Res. 1990;50:7775–80.

    PubMed  CAS  Google Scholar 

  39. Smith KA, Begg AC, Denekamp J. Differences in chemosensitivity between subcutaneous and pulmonary tumours. Eur J Cancer Clin Oncol. 1985;21(2):249–56.

    Article  PubMed  CAS  Google Scholar 

  40. Sikder H, Huso DL, Zhang H, et al. Disruption of Id1 reveals major differences in angiogenesis between transplanted and autochthonous tumors. Cancer Cell. 2003;4(4):291–9.

    Article  PubMed  CAS  Google Scholar 

  41. Alani RM, Silverthorn CF, Orosz K. Tumor angiogensis in mice and men. Cancer Biol Ther. 2004;5(6):498–500.

    Google Scholar 

  42. Johnson JI, Decker S, Zaharevitz D, et al. Relationships between drug activity in NCl prelinicalin vitro andin vivo models and early clinical trials. Br J Cancer 2001;84(10):1424–51.

    Article  PubMed  CAS  Google Scholar 

  43. Farre L, Casanova I, Guerrero S, Trias M, Capella G, Mangues R. Heterotopic implantation alters the regulation of apoptosis and the cell cycle and generates a new metastatic site in a human pancreatic tumor xenograft model. FASEB J. 2002;16 (9):975–82.

    Article  PubMed  CAS  Google Scholar 

  44. Rosenberg MP, Bortner D. Why transgenic and knockout animal models should be used (for drug efficacy studies in cancer). Cancer Metastasis Rev. 1998–99;17 (5):295–9.

    Article  Google Scholar 

  45. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cacer. 2002;2(5):331–41.

    Article  CAS  Google Scholar 

  46. Clarke AR. Manipulating the germline: its impact on the study of carcinogenesis Carcinogenesis. 2000;21:435–41.

    Article  PubMed  CAS  Google Scholar 

  47. Alexander J. Use of transgenic mice in identifying chemopreventive agents. Toxicol Lett. 2000;112–113:507–12.

    Article  PubMed  Google Scholar 

  48. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108:155–64.

    Article  Google Scholar 

  49. Berns A. Cancer. Improved mouse models. Nature. 2001;410:1045–4.

    Article  CAS  Google Scholar 

  50. Adams JM, Cory S. Transgenic models of tumor development. Science. 1991;254: 1161–7.

    Article  PubMed  CAS  Google Scholar 

  51. Clarke AR. Manipulating the germline: its impact on the study of carcinogenesis. Carcinogenesis. 2000;21:435–41.

    Article  PubMed  CAS  Google Scholar 

  52. Hakem Rr, Mak TW. Animal models of tumor suppressor genes. Ann Rev Genet. 2001;35:209–41.

    Article  PubMed  CAS  Google Scholar 

  53. Tuveson DA, Jacks T. Technologically advanced cancer modeling in mice. Curr Opin Genet Dev. 2002;12(1):105–10.

    Article  PubMed  CAS  Google Scholar 

  54. Jonkers J, Berns A. Conditional mouse models of sporadic cancer. Nat Rev Cancer. 2002;2:251–65.

    Article  PubMed  CAS  Google Scholar 

  55. Herzig M, Christofori G. Recent advances in cancer research: mouse models of tumor igenesis. Biochim Biophys Acta. 2002;1602(2):97–113.

    PubMed  CAS  Google Scholar 

  56. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994;265:103–6.

    Article  PubMed  CAS  Google Scholar 

  57. Lewandoski M. Conditional control of gene expression in the mouse. Nat Rev Genet. 2002;2:743–55.

    Article  CAS  Google Scholar 

  58. Su LK, Kinzler KW, Vogelstein B, et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science. 1992;256(5057):668–70.

    Article  PubMed  CAS  Google Scholar 

  59. Shibata H, Toyama K, Shioya H, et al. Rapid colorectal adenoma formation initiated by conditional, targeting of the Apc gene. Science. 1997;278(5335):120–5.

    Article  PubMed  CAS  Google Scholar 

  60. Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med. 2005;11(1):63–70.

    Article  PubMed  CAS  Google Scholar 

  61. Aguirre AJ, Bardeesy N, Sinha M, López L, Tuveson DA, Horner J, Redston MS, DePinho RA. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 2003;17(24):3112–26.

    Article  PubMed  CAS  Google Scholar 

  62. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet. 2001;28(2):155–9.

    Article  PubMed  CAS  Google Scholar 

  63. Druker BJ. Imatinib as a paradigm of targeted therapies. Adv Cancer Res. 2004;91: 1–30.

    Article  PubMed  CAS  Google Scholar 

  64. Griffin JD. FLT3 tyrosine kinase as a target in acute leukemias. Hematol J. 2004;5 Suppl 3:S188–90.

    Article  CAS  Google Scholar 

  65. Weisberg E, Griffin JD. Resistance to imatinib (Glivec): update on clinical mechanisms. Drug Resist Updat. 2003;6(5):231–8.

    Article  PubMed  CAS  Google Scholar 

  66. Knudson AG Jr. Overview: genes that predispose to cancer. Mutat Res. 1991;247 (2):185–90.

    PubMed  Google Scholar 

  67. Bankert RB, Egilmez NK, Hess SD. Human-SCID mouse chimeric models for the evaluation of anti-cancer therapies. Trends Immunol. 2001;22(7):386–93.

    Article  PubMed  CAS  Google Scholar 

  68. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003; 200(4):429–47.

    Article  PubMed  CAS  Google Scholar 

  69. Eccles SA, Fox G, Court W, Sandle J, Dean CJ. Preclinical models for the evaluation of targeted therapies of metastatic disease. Cell Biophys. 1994;24:279–91.

    PubMed  Google Scholar 

  70. Hoffman RM. Orthotopic is orthodox: why are orthotopic-transplant metastatic models different from all other models? J Cell Biochem. 1994;56(1):1–3.

    Article  PubMed  CAS  Google Scholar 

  71. Killion JJ, Radinsky R, Fidler IJ. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 1998–99;17(3):279–84.

    Article  Google Scholar 

  72. Bibby MC. Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer. 2004;40(6):852–7.

    Article  PubMed  CAS  Google Scholar 

  73. Radinsky R. Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment. Cancer Metastasis Rev. 1995;14(4):523–58.

    Article  Google Scholar 

  74. Pocard M, Tsukui H, Salmon RJ, Dutrillaux B, Poupon MF. Efficiency of orthotopic xenograft models for human colon cancers. In Vivo. 1996;10(5):463–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Mangues PhD.

Additional information

Supported by an unrestricted educational grant from AstraZeneca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Céspedes, M.V., Casanova, I., Parreño, M. et al. Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol 8, 318–329 (2006). https://doi.org/10.1007/s12094-006-0177-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0177-7

Key words

Navigation