Skip to main content

Advertisement

Log in

What can nanotechnology do to fight cancer?

  • Educational series
  • Red Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The marriage of physics, chemistry and biology at the namometric scale, nanotechnology, is a powerful technology which is predicted to have a large impacto on life sciences and particularly cancer treatment. In the following we will show some examples of applications which has already reached clinical treatments as new ideas which may positively influence the understanding, diagnosis and therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiberstis PA, Travis J. Celebration a Glass Half-Full. Science. 2006;312:1157.

    Article  CAS  Google Scholar 

  2. Special number dedicate to cancer research: Frontiers in Cancer Research, Science; 2006. p. 312.

  3. http://nano.cancer.gov/

  4. Alivisatos AP. Less is more in medicine—Sophisticated forms of nanotechnology will find some of their first real-world applications in biomedical research, disease diagnosis and, possibly, therapy. Sciencetific American. 2001;285:66–75.

    CAS  Google Scholar 

  5. Service, R. Nanotechnology Takes Aim at Cancer. Science. 2005;310:1132–4.

    Article  PubMed  Google Scholar 

  6. Chemla Y, Grossman HL, Poon Y, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. PNAS. 2000; 97:14268–72.

    Article  PubMed  CAS  Google Scholar 

  7. Zheng, G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23:1294–301.

    Article  PubMed  CAS  Google Scholar 

  8. Parak W, Boudreau R, Le Gros M, et al. Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks Adv. Mater. 2002; 14:882–5.

    CAS  Google Scholar 

  9. Albrecht-Buehler G. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell. 1977;12:333–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gao X, Cui Y, Levenson R, Chung L, Nie S.In vivo cancer targeting and imaging with semiconductor quantum dots Nat. Biotech. 2004;22:969–76.

    Article  CAS  Google Scholar 

  11. Zimmer JP, Kim S-W, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG. Size Series of Small Indium Arsenide-Zinc Selenide Core-Shell Nanocrystals and Their Application to In Vivo Imaging. J. Ame. Chem. Soc. 2006;128:2526–7.

    Article  CAS  Google Scholar 

  12. Leuschner C, Hansel W. Targeting breast and prostate cancers through their hormone receptors. Biology of Reproduction. 2005;73:860–5.

    Article  PubMed  CAS  Google Scholar 

  13. Dubertret B, Calame M, Libchaber AJ. Single-mismatch detection using goldquenched fluorescent oligonucleotides. Nature Biotechnology. 2001;19:365–70.

    Article  PubMed  CAS  Google Scholar 

  14. Okada H. One- and three- month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv. in Drug Deliv Rev. 1997;28:71–84.

    Article  Google Scholar 

  15. LaVan DA, Lynn DM, Langer R. Moving smaller in Drug Discovery and Delivery. Nature Reviews Drug Discovery, 2002;1:77–84.

    Article  PubMed  CAS  Google Scholar 

  16. Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapyin vivo PNAS. 2006;103:6315–20.

    Article  PubMed  CAS  Google Scholar 

  17. Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436:568–72.

    Article  PubMed  CAS  Google Scholar 

  18. Alexiou C, Arnold W, Klein RJ, et al. Locoregional Cancer Treatment with Magnetic Drug Targeting. Cancer Res. 2000;60:6641–48.

    PubMed  CAS  Google Scholar 

  19. Kogan M, Bastus N, Amigo R, et al. Local and Remote Manipulation of Protein Aggregation, Nanoletters, 2006;6:111–6.

    Google Scholar 

  20. O'Neal DP, Hirsch LR, Halas N, et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles Cancer Lett. 2004;209:171–6.

    Article  PubMed  Google Scholar 

  21. Kam NWS, O'Connell M, Wisdom, JA, Dai H. Selective cancer cell destruction: Carbon nanotubes as multifunctional biological transporters and near-infrared agents PNAS. 2005;102:11600–5.

    Article  PubMed  CAS  Google Scholar 

  22. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents. Molecular Pharmaceutics. 2005;2:194–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Puntes.

Additional information

Supported by an unrestricted educational grant from AstraZeneca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego, Ó., Puntes, V. What can nanotechnology do to fight cancer?. Clin Transl Oncol 8, 788–795 (2006). https://doi.org/10.1007/s12094-006-0133-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0133-6

Key words

Navigation