Skip to main content

Advertisement

Log in

Tumor metabolism: new opportunities for cancer therapy

  • Educational Series
  • Green Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Mammalian cells depend on extracellular input for the regulation of growth, proliferation and survival. Cancer cells evade these requirements, and are able to take up nutrients in a cell-autonomous fashion, which allows continuous growth and proliferation. To fulfill the high bioenergetic demands imposed by transformation, tumors must develop alternative mechanisms of energy production. Accordingly, the biochemical signature of cancer cells involves a shift to aerobic glycolysis, also known as the «Warburg effect». This property of cancer cells has resulted of great utility in modern medicine for detection of early tumors by positron-emission scanning. Nonetheless, the underlying mechanisms and contribution of the Warburg effect to the malignant phenotype have remained obscure. Thanks to recent advances in cancer research, we are beginning to understand the link between cancer genetics and the abnormal use of glucose by tumors. A new scenario is thus emerging, in which bioenergetics would contribute to and sustain malignant transformation. These findings are not only important for a better understanding of tumorigenesis; tumor reliance on glycolysis can be exploited in the search for novel, more potent therapeutic approaches to cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanahan D, Weinberg R. The hallmarks of cancer. Cell, 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Hammerman P, Fox C, Thompson C. Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends Biochem Sci. 2004;15:259–66.

    Google Scholar 

  3. Warburg O. On the origin of cancer cells. Science, 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  4. Gambhir S. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer, 2002;2:683–93.

    Article  PubMed  CAS  Google Scholar 

  5. Baysal B, Ferrell R, Willett-Brozick J, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 2000;287:848–51.

    Article  PubMed  CAS  Google Scholar 

  6. Tomlinson I. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Gen. 2002;30: 406–10.

    Article  CAS  Google Scholar 

  7. Selak M, Armour S, MacKenzie E, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7:77–85.

    Article  PubMed  CAS  Google Scholar 

  8. Semenza G. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med. 2001;7:345–50.

    Article  PubMed  CAS  Google Scholar 

  9. Semenza G. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 2003;3:721–32.

    Article  PubMed  CAS  Google Scholar 

  10. Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer. 2003;107:873–7.

    Article  PubMed  CAS  Google Scholar 

  11. Fresno Vara J, Casado E, de Castro, J, et al. P13K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    Article  PubMed  Google Scholar 

  12. Engelman J, Luo J, Cantley L. The evaolution of P13 kinases as regulators of growth and metabolism. Nat Review Genet. 2006;441:606–19.

    Article  Google Scholar 

  13. Majewski N. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004;16:819–30.

    Article  PubMed  CAS  Google Scholar 

  14. Kahn B, Alquier T, Carling D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005; 1:15–25.

    Article  PubMed  CAS  Google Scholar 

  15. Jones R, Plas D, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18:283–93.

    Article  PubMed  CAS  Google Scholar 

  16. Corradetti M, Inoki K, Bardeesy N, et al. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 2004;18:1533–8.

    Article  PubMed  CAS  Google Scholar 

  17. Wullschlege R, Loewith R, Hall M. TOR signaling in growth and metabolism. Cell. 2006;124:471–84.

    Article  Google Scholar 

  18. Li Y CM, Inoki K, Guan KL. TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci. 2004;29:32–8.

    Article  PubMed  Google Scholar 

  19. Manning B, Cantley L. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci. 2003;28:573–6.

    Article  PubMed  CAS  Google Scholar 

  20. Inoki K, Zhu T, Guan K. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.

    Article  PubMed  CAS  Google Scholar 

  21. Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.

    Article  PubMed  CAS  Google Scholar 

  22. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov, 2006;2:132–4.

    Google Scholar 

  23. Kondoh H, Lleonart M, Gil J, et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005;65:177–85.

    PubMed  CAS  Google Scholar 

  24. Kim JW, Dang CV: Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2005;30:142–50.

    Article  PubMed  CAS  Google Scholar 

  25. Gottlob K, Majewski N, Kennedy S, et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15:1406–18.

    Article  PubMed  CAS  Google Scholar 

  26. Sun Y, Chou C, Chen W, et al. The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin. Proc Natl Acad Sci USA. 1999;96:5412–7.

    Article  PubMed  CAS  Google Scholar 

  27. Zheng L, Roeder R, Luo Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell Metab. 2003; 114:255–66.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Mérida.

Additional information

Supported by an unrestricted educational grant from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mérida, I., Ávila-Flores, A. Tumor metabolism: new opportunities for cancer therapy. Clin Transl Oncol 8, 711–716 (2006). https://doi.org/10.1007/s12094-006-0117-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0117-6

Key words

Navigation