Skip to main content

Advertisement

Log in

Molecular biology of breast cancer

  • Educational Series
  • Blue Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Summary

Although Breast Cancer (BC) has been considered for many years as a single entity with a common management and treatment, it is actually a extremely heterogeneous disease which includes at least 4 or 5 very different subtypes. The first step in the recognition of the heterogeneity of BC was the demonstration of the presence of functional hormonal receptors (HR) in nearly two thirds of breast cancer specimens. This finding, which established a first classification of BC in two clear subtypes (HR-positive and HR-negative) was followed by the demonstration of many other differential features. The her2/neu gene alteration, present in nearly 20% of BC tumors, is probably the most relevant of them, but certainly not the only one. The development of new technologies and, in particular, the use of complementary DNA (cDNA)microarrays will allow us now the simultaneous analysis of thousands of genes and the establishment of new, more refined BC subtypes based on gene expression profiles/genetic fingerprints.

This review discusses the practical applications of molecular analysis of BC, which can be classified in four categories:

  1. 1.

    Establishment of a new molecular taxonomy of breast cancer.

  2. 2.

    Definition of prognostic factors/prognostic indexes based on molecular/genetic peculiarities.

  3. 3.

    Prediction of response to diverse antitumoral treatments.

  4. 4.

    Identification of molecular targets that allows the development of new tailored antitumor treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cristofanilli M, González-Angulo A, Sneige N, et al. Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol. 2005;23:41–8.

    Article  PubMed  Google Scholar 

  2. Korkola JE, DeVries S, Fridland J, et al. Differentiation of lobular versus ductal breast carcinomas by expression mycroarray analysis. Cancer Res. 2003;63:7167–75.

    PubMed  CAS  Google Scholar 

  3. National Human Genome Research Institute. National Institutes of Health. http://www.genome.gov/

  4. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  5. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003; 100:8418–23.

    Article  PubMed  CAS  Google Scholar 

  6. Subramaniam D, Isaacs C. Utilizing prognostic and predictive factors in breast cancer. Curr Treat Options in Oncol. 2005;6:147–59.

    Article  Google Scholar 

  7. Colozza M, Cardoso F, Sotiriou C, Larsimont D, Piccart M. Bringing Molecular Prognosis and Prediction to the Clinic. Clinical Breast Cancer. 2005;6:61–76.

    PubMed  CAS  Google Scholar 

  8. Janicke F, Smith M, Pache L, et al. Urokinase-type plasminogen (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res Treat, 1993;24:195–208.

    Article  PubMed  CAS  Google Scholar 

  9. Look MP, van Putten WL, Duffy MJ, et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8577 breast cancer patients. J Natl Cancer Inst. 2002;94: 116–28.

    PubMed  CAS  Google Scholar 

  10. Hayes DF, Bast RC, Desch CE, et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst. 1996; 88:1456–66.

    Article  PubMed  CAS  Google Scholar 

  11. Janicke F, Prechtl A, Thomssen C, et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst. 2001;93:913–20.

    Article  PubMed  CAS  Google Scholar 

  12. Keryomarsi K, Tucker SL, Buchholz TA, et al. Cyclin E and survival in patients with breast cancer. N Engl J Med. 2002; 347:1566–75.

    Article  Google Scholar 

  13. Yamauchi H, Stearns V, Hayes DF. When is a tumor marker ready for prime time? A case study ofc-erbB-2 as a predictive factor in breast cancer. J Clin Oncol. 2001;19:2334–56.

    PubMed  CAS  Google Scholar 

  14. Press MF, Bernstein L, Thomas PA, et al. HER-2/neu gene ampliflcation characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol. 1997;15:2894–904.

    PubMed  CAS  Google Scholar 

  15. Wenger CR, Clark GM. S-phase fraction and breast cancer: a decade of experience. Breast Cancer Res Treat. 1998;51:255–65.

    Article  PubMed  CAS  Google Scholar 

  16. Silvestrini R, Daidone MG, Luisi A, et al. Biologic and clinicopathologic factors as indicators of specific relapse types in node-negative breast cancer. J Clin Oncol. 1995;13:697–704.

    PubMed  CAS  Google Scholar 

  17. Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki-67 in early breast cancer. J Clin Oncol. 2005;23:7212–20.

    Article  PubMed  CAS  Google Scholar 

  18. Knowlton K, Mancini M, Creason S. Morales C, Hockenbwy D, Anderson BO. Bcl-2 slows in vitro breast cancer growth despite its antiapoptotic effect. J Surg Res. 1998;76:22–6.

    Article  PubMed  CAS  Google Scholar 

  19. van Slooten HJ, Clahsen PC, van Dierendonck JH, et al. Expresión of Bcl-2 In node-negative breast cancer is associated with various prognostic factors, but does not predict response to one course of peroperative chemotherapy. Br J Cancer. 1996;74:78–85.

    PubMed  Google Scholar 

  20. Pharoah PDP, Day NE, Caldas C. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer. 1999;80:1968–73.

    Article  PubMed  CAS  Google Scholar 

  21. van't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  Google Scholar 

  22. van de Vljver M, He YD, van't Veer L, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  Google Scholar 

  23. Espinosa E, Fresno Vara JA, Redondo A, et al. Breast cancer prognosis determined by gene expression profiling: A quantitative RT-PCR study. J Clin Oncol. 2005;23: 7278–85.

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Klijn JG, Zhang Y, et al. Gene expression profiles to predict distant metastasis of lymph node negative primary breast cancer. Lancet. 2005;365:671–9.

    PubMed  CAS  Google Scholar 

  25. Ahr A, Kam T, Solbach, C, et al. Identification of high risk breast-cancer patients by gene expression profiling. Lancet. 2002; 359:131–2.

    Article  PubMed  Google Scholar 

  26. Cui X, Schiff R, Arpino G, Osborne CK, Lee AV. Biology of progesterone loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 2005;23: 7721–35.

    Article  PubMed  CAS  Google Scholar 

  27. Harbeck N, Bohlmann I, Ross JS, et al. Multicenter study validates PITX2 DNA methylation for risk prediction in tamoxifen-treated node-negative breast cancer using paraphine-embedded tumor tissue. J Clin Oncol. 2005;23 Suppl 16:5S (abstract 505).

    Google Scholar 

  28. Hopp TA, Weiss HL, Hilsenbeck SG, et al. Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res. 2004;10:2751–60.

    Article  PubMed  CAS  Google Scholar 

  29. Jansen MP, Foekens JA, van Staveren IL, et al. Molecular Classification of Tamoxifen-Resistant Breast Carcinomas by Gene Expression Profiling. J Clin Oncol. 2005; 23:732–40.

    Article  PubMed  CAS  Google Scholar 

  30. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifentreated node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  PubMed  CAS  Google Scholar 

  31. Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular Classification and Molecular Forecasting of Breast Cancer: Ready for Clinical Application? J Clin Oncol. 2005; 23:7350–60.

    Article  PubMed  CAS  Google Scholar 

  32. Harbeck N, Kates RE, Look MP, et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n=3,424). Cancer Res. 2002;62:4617–22.

    PubMed  CAS  Google Scholar 

  33. Rouzier R, Rajan R, Wagner P, et al. Microtubule-associated protein tau: A marker of paclitaxel sensitivity in breast cancer. PNAS. 2005;102:8315–20.

    Article  PubMed  CAS  Google Scholar 

  34. Bernard-Marty C, Treilleux I, Dumontet C, et al. Microtubule-Associated Parameters as Predictive Markers of Docetaxel Activity in Advanced Breast Cancer Patients: Results of a Pilot Study. Clinical Breast Cancer. 2002;3:341–5.

    Article  PubMed  CAS  Google Scholar 

  35. Bautista de Lucio V, Madrid Marina V, Barrera Rodríguez R. The molecular biology of topoisomerase IIalpha and its importance in the acquisiton of multidrug resistance in cancer. Rev Oncol 2002;4: 67–72.

    Google Scholar 

  36. Durbecq V, Paesmans M, Cardoso F, et al. Topoisomerase-II alpha expression as a predictive marker in a population of advanced breast cancer patients randomly treated either with single-agent doxorubicin or single-agent docetaxel. Mol Cancer Ther. 2004;3:1207–14.

    PubMed  CAS  Google Scholar 

  37. Knoop AS, Knudsen H, Balslev A, et al. Retrospective Analysis of Topoisomerase IIalpha Amplifications and Deletions As Predictive Markers in Primary Breast Cancer Patients Randomly Assigned to Cyclophosphamide, Methotrexate, and fluorouracil or Cyclophosphamide, Epirubicin, and fluorouracil: Danish Breast Cancer Cooperative Group. J Clin Oncol. 2005;23:7483–90.

    Article  PubMed  CAS  Google Scholar 

  38. Slamon D, Eiermann W, Robert N, et al. Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab, with docetaxel, carboplatin and trastuzumab (TCH) in HER2 positive early breast cancer patients: BCIRG 006 study. Breast Cancer Res Treatment 2005;94 Suppl 1:S5 (abstract 1).

    Google Scholar 

  39. González-Angulo AM, Krishnamurthy S, Yamamura Y, et al. Lack of Association between Amplification of her-2 and Response to Preoperanve taxanes in Patiems with Breast Carcinoma. Cancer. 2004;101:258–63.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang F, Yang Y, Smith T, et al. Correlation between her-2 expression and response to neoadjuvant chemotherapy with 5-fluorouracil, doxorubicin and cyclo phosphamide in patients with breast carcinoma. Cancer. 2003;97:1758–65.

    Article  PubMed  CAS  Google Scholar 

  41. Ayers M, Symmans WF, Stec J, et al. Gene Expression Profiles Predict Complete Pathologic Response to Neoadjuvant Paclitaxel and Fluorouracil, Doxorubicin, and Cyclophosphamide Chemotherapy in Breast Cancer. J Clin Oncol. 2004;22:2284–93.

    Article  PubMed  CAS  Google Scholar 

  42. Chang JC, Wooten EC, Tsimelzon A, et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet. 2003;362:362–9.

    Article  PubMed  CAS  Google Scholar 

  43. Chang JC, Wooten EC, Tsimelzon A, et al. Patterns of Resistance and Incomplete Response to Docetaxel by Gene Expression Profiling in Breast Cancer Patients. J Clin Oncol. 2005;23:1169–77.

    Article  PubMed  CAS  Google Scholar 

  44. Gianni L, Zambetti M, Clark K, et al. Gene Expression Profiles in Paraffin-Embedded Core Biopsy Tissue Predict Response to Chemotherapy in Women With Locally Advanced Breast Cancer. J Clin Oncol. 2005;23:7265–77.

    Article  PubMed  CAS  Google Scholar 

  45. Hannemann J, Oosterkamp HM, Bosch CAJ, et al. Changes in Gene Expression Associated With Response to Neoadjuvant Chemotherapy in Breast Cancer. J Clin Oncol. 2005;23:3331–42.

    Article  PubMed  CAS  Google Scholar 

  46. Rouzier R, Perou CM, Symmans F, et al. Breast Cancer Molecular Subtypes Respond Differently to Preooerative Chemotherapy. Clin Cancer Res. 2005;11:5678–85.

    Article  PubMed  CAS  Google Scholar 

  47. Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science. 1999;286:2507–10.

    Article  PubMed  CAS  Google Scholar 

  48. Tammela Enholm B, Alitalo K, Pavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65:550–63.

    Article  PubMed  CAS  Google Scholar 

  49. Esteller M. CpG island hypermetilation and tumor suppressor geens: a booming present, a brighter future. Oncogene. 2002; 343:1350–4.

    Google Scholar 

  50. Shay JV, Wright WE. Telomerase: a target for cancer therapeutics. Cancer Cell. 2002; 2:257–65.

    Article  PubMed  CAS  Google Scholar 

  51. Ramírez de Molina A, Gutiérrez R, Ramos MA, et al. Increased cholin kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene. 2002;21:4317–23.

    Article  PubMed  CAS  Google Scholar 

  52. Arnold A, Papanikolau A. Cyclin D1 in breast cancer pathogenesis. J Clin Oncol. 2005;23:4215–24.

    Article  PubMed  CAS  Google Scholar 

  53. Aznar S, Lacal JC. Searching for new targets for anticancer drug design: the families of ras and rhoGPTases and their effectors. Prog Nucleic Res Mol Biol. 2001; 67:193–234.

    Article  CAS  Google Scholar 

  54. Osborne C, Wilson P, Tripathy D. Oncogeens and tumor supresor genes in brewast cancer: potential diagnostic and therapeutic applications. The Oncologist. 2004;9:361–77.

    Article  PubMed  CAS  Google Scholar 

  55. Massague J. Breast Cancer metastasis genes and functions. Breast Cancer Res Treatment. 2005;94:Suppl 1:S3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by an unrestricted educational grant by Bristol-Myers Squibb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, M. Molecular biology of breast cancer. Clin Transl Oncol 8, 7–14 (2006). https://doi.org/10.1007/s12094-006-0089-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0089-6

Keywords

Navigation