Skip to main content

Advertisement

Log in

Protein kinases and phosphatases as therapeutic targets in cancer

  • Educational Series
  • Green Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Summary

Protein phosphorylation plays key roles in many physiological processes and is often deregulated in pathological conditions. Our current understanding of how protein kinases and phosphatases orchestrate the phosphorylation changes that control cellular functions has made these enzymes potential drug targets for the treatment of many diseases. The success of the tyrosine kinase inhibitor Gleevec in the treatment of some cancer has further invigorated the development of kinase inhibitors as anti-cancer drugs. A larger number of these compounds are currently undergoing clinical trials and there is much expectation on the therapeutic potential of these molecules, as more specific and less toxic drugs than currently used generic chemotherapeutic agents. In this manuscript, we review the current status of more than 30 protein kinase inhibitors with proven or potential therapeutic value for cancer treatment. These include inhibitors of receptor and cytosolic tyrosine kinases as well as compounds that target different families of serine/threonine kinases involved in signalling and cell cycle regulation. We also briefly touch on the prospects of phosphatase inhibitors. The combination of kinase inhibitors to target different components of signalling pathways that are found deregulated in tumours is also emerging as an interesting approach for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manning G, Whyte DB, Martínez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  PubMed  CAS  Google Scholar 

  2. Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov. 2003;2:296–313.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen P: Protein kinases-the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002;1:509–15.

    Article  Google Scholar 

  4. Noble ME, Endicott JA, Johnson LN. Protein kinase inhibitors: insights into drug design from structure. Science. 2004; 303:1800–5.

    Article  PubMed  CAS  Google Scholar 

  5. Biondi RM, Nebrada AR. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J. 2003;372:1–13.

    Article  PubMed  CAS  Google Scholar 

  6. Ducruet AP, Vogt A, Wipf P, Lazo JS. Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer's disease. Annu Rev Pharmacol Toxicol. 2005; 45:725–50.

    Article  PubMed  CAS  Google Scholar 

  7. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;355:172–87.

    Article  Google Scholar 

  8. Fischer OM, Streit S, Hart S, Ullrich A. Beyond Herceptin and Gleevec. Curr Opin Chem Biol. 2003;7:490–5.

    Article  PubMed  CAS  Google Scholar 

  9. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;105:211–25.

    Article  Google Scholar 

  10. Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr-AbI tyrosine kinases. Nat Rev Mol Cell Biol. 2004;5:33–44.

    Article  PubMed  CAS  Google Scholar 

  11. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;505:1163–7.

    Article  CAS  Google Scholar 

  12. Watanabe D, Ezoe S, Fujimoto M, et al. Suppressor of cytokine signalling-1 gene silencing in acute myeloid leukaemia and human haematopoietic cell lines. Br J Haematol. 2004;126:726–35.

    Article  PubMed  CAS  Google Scholar 

  13. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;544:785–92.

    Google Scholar 

  14. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001; 344;1038–42.

    Article  PubMed  CAS  Google Scholar 

  15. Martinelli G, Soverini S, Rosti G, Baccarani M. Dual tyrosine kinase inhibitors in chronic myeloid leukemia. Leukemia 2005;19:1872–9.

    Article  PubMed  CAS  Google Scholar 

  16. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;505:399–401.

    Article  CAS  Google Scholar 

  17. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;547:472–80.

    Article  Google Scholar 

  18. Malumbres M., Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci. 2005;30:630–41.

    Article  PubMed  CAS  Google Scholar 

  19. Malumbres M, Barbacid M. Is Cyclin D1-CDK4 kinase a bona fide cancer target?. Cancer Cell. 2006;9:2–4.

    Article  PubMed  CAS  Google Scholar 

  20. Collins I, Garrett MD. Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol. 2005;5:566–73.

    Article  Google Scholar 

  21. Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–9.

    Article  PubMed  CAS  Google Scholar 

  22. Weaver BA, Cleveland DW. Decoding the links between mitosis, cancer, and chemotherapy: The mototic checkpoint, adaptation, and cell death. Cancer Cell. 2005;8: 7–12.

    Article  PubMed  CAS  Google Scholar 

  23. Eckerdt F, Yuan, J, Strebhardt K. Polo-like kinase and oncogenesis. Oncogene. 2005; 24:267–76.

    Article  PubMed  CAS  Google Scholar 

  24. Giet R, Petretti C., Prigent C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol. 2005;15: 241–50.

    Article  PubMed  CAS  Google Scholar 

  25. Gumiredy K, Reddy MV, Consenza SC, et al. ONO 1910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 2005;7:275–86.

    Article  CAS  Google Scholar 

  26. Andrews PD. Aurora kinases: shining lights on the therapeutic horizon? Oncogene. 2005;24:5005–15.

    Article  PubMed  CAS  Google Scholar 

  27. Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer. 2004;4:927–36.

    Article  PubMed  CAS  Google Scholar 

  28. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24:7455–64.

    Article  PubMed  CAS  Google Scholar 

  29. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene. 2005;24:7482–92.

    Article  PubMed  CAS  Google Scholar 

  30. Kumar CC, Madison V: AKT crystal structure and AKT-specific inhibitors. Oncogene. 2005;24:7493–501.

    Article  PubMed  CAS  Google Scholar 

  31. Recher C, Dos Santos C, Demur C, Payrastre B. mTOR, a new therapeutic target in acute myeloid leukemia. Cell Cycle. 2005;4:1540–9.

    PubMed  CAS  Google Scholar 

  32. Meric-Bernstam F, Mills GB. Mammalian target of rapamycin. Semin Oncol. 2004; 51:10–7; discussion 33.

    Article  CAS  Google Scholar 

  33. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.

    Article  PubMed  CAS  Google Scholar 

  34. Chong H, Vikis HG, Guan KL. Mechanisms of regulating the Raf kinase family. Cell Signal. 2003;15:463–9.

    Article  PubMed  CAS  Google Scholar 

  35. Beeram M, Patnaik A, Rowinsky EK. Raf: a strategic target for therapeutic development against cancer. J Clin Oncol. 2005; 23:6771–90.

    Article  PubMed  CAS  Google Scholar 

  36. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004; 4:937–47.

    Article  PubMed  CAS  Google Scholar 

  37. Solit DB, Garraway LA, Pratilas CA, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;459:558–62.

    Google Scholar 

  38. Bulavin DV, Fornace AJ, Jr.. p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res. 2004;92:95–118.

    Article  PubMed  CAS  Google Scholar 

  39. Olson JM, Hallahan AR. p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med. 2004;10:125–9.

    Article  PubMed  CAS  Google Scholar 

  40. Manning AM, Davis RJ. Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov. 2003;2:554–65.

    Article  PubMed  CAS  Google Scholar 

  41. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed  CAS  Google Scholar 

  42. Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  PubMed  CAS  Google Scholar 

  43. Kristjansdottir K, Rudolph J. Cdc25 phosphatases and cancer. Chem. Biol. 2004;11: 1043–51.

    Article  PubMed  CAS  Google Scholar 

  44. Gallego M, Virshup DM. Protein serine/threonine phosphatases: life, death, and sleeping. Curr Opin Cell Biol. 2005;17: 197–202.

    Article  PubMed  CAS  Google Scholar 

  45. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor supressor pathway. J Clin Oncol. 2004;22: 2954–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan-José Ventura or Ángel R. Nebreda.

Additional information

Supported by an unrestricted educational grant from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, JJ., Nebreda, Á.R. Protein kinases and phosphatases as therapeutic targets in cancer. Clin Transl Oncol 8, 153–160 (2006). https://doi.org/10.1007/s12094-006-0005-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0005-0

Keywords

Navigation