Skip to main content
Log in

Annotation and De Novo Sequence Characterization of Extracellular β-Fructofuranosidase from Penicillium chrysogenum Strain HKF42

  • Short Communication
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The genome of a fungal strain Penicillium chrysogenum strain HKF42, which can grow on 20% sucrose has been annotated for 7595 protein coding sequences. On mining of CAZymes, we could annotate a β-fructofuranosidase gene responsible for fructo-oligosaccharides (FOS) synthesis which is a known prebiotic. The enzyme activity was demonstrated and validated with the generation of FOS as kestose and nystose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Vega R, Zuniga-Hansen ME (2014) A new mechanism and kinetic model for the enzymatic synthesis of short-chain fructooligosaccharides from sucrose. Biochem Eng J 82:158–165. https://doi.org/10.1016/j.bej.2013.11.012

    Article  CAS  Google Scholar 

  2. Huang MP, Wu M, Xu QS, Mo DJ, Feng JX  (2016) Highly efficient synthesis of fructooligosaccharides by extracellular fructooligosaccharide-producing enzymes and immobilized cells of Aspergillus aculeatus M105 and purification and biochemical characterization of a fructosyltransferase from the fungus. J Agric Food Chem 64:6425–6432. https://doi.org/10.1021/acs.jafc.6b02115

    Article  CAS  PubMed  Google Scholar 

  3. Lorenzoni ASG, Aydos LF, Klein MP, Rodrigues RC, Hertz PF (2014) Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydr Polym 103:193–197. https://doi.org/10.1016/j.carbpol.2013.12.038

    Article  CAS  PubMed  Google Scholar 

  4. Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodrigues-Herrera R, Teixeira JA, Aguilar CN (2014) Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 36:259–267. https://doi.org/10.3109/07388551.2014.953443

    Article  PubMed  Google Scholar 

  5. Marin-Navarro J, Talens-Perales D, Polaina J (2015) One-pot production of fructooligosaccharides by a Saccharomyces cerevisiae strain expressing an engineered invertase. Appl Microbiol Biotechnol 99:2549–2555. https://doi.org/10.1007/s00253-014-6312-4

    Article  CAS  PubMed  Google Scholar 

  6. Aguiar-oliveira E, Maugeri F (2012) Effects of lyophilization on the catalytic properties of extracellular fructosyltransferase from Rhodotorula sp. LEB-V10. Int Res J Biotechnol 3:96–111

    Google Scholar 

  7. Bali V, Panesar PS, Bera MB, Panesar R (2013) Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr 55:1475–1490. https://doi.org/10.1080/10408398.2012.694084

    Article  Google Scholar 

  8. Mussatto SI, Prata MB, Rodrigues LR, Teixeira JA (2012) Production of fructooligosaccharides and β-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. Eur Food Res Technol 235:13–22. https://doi.org/10.1007/s00217-012-1728-5

    Article  CAS  Google Scholar 

  9. Nascimento AKC, Nobre C, Cavalcanti MTH, Teixeira JA, Porto ALF (2016) Screening of fungi from the genus Penicillium for production of β-fructofuranosidase and enzymatic synthesis of fructooligosaccharides. J Mol Catal B Enzym 134:70–78. https://doi.org/10.1016/j.molcatb.2016.09.005

    Article  CAS  Google Scholar 

  10. Xu Q, Zheng X, Huang M, Wu N, Yan Y, Pan J, Yang Q, Duan CJ, Liu JL, Feng JX (2014) Purification and biochemical characterization of a novel β-fructofuranosidase from Penicillium oxalicum with transfructosylating activity producing neokestose. Process Biochem 50:1237–1246. https://doi.org/10.1016/j.procbio.2015.04.020

    Article  Google Scholar 

  11. Deshmukh R, Mathew A, Purohit HJ (2014) Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. J Biosci Bioeng 117:443–448. https://doi.org/10.1016/j.jbiosc.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  12. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18. https://doi.org/10.1186/2047-217X-1-18

    Article  PubMed  PubMed Central  Google Scholar 

  13. Borodovsky M, Lomsadze A (2011) Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr Protoc Bioinforma 33:6494–6506. https://doi.org/10.1002/0471250953.bi0406s35

    Google Scholar 

  14. Hu L, Taujale R, Liu F, Song J, Yin Q, Zhang Y, Guo J, Yin Y (2016) Draft genome sequence of Talaromyces verruculosus (“Penicillium verruculosum”) strain TS63-9, a fungus with great potential for industrial production of polysaccharide-degrading enzymes. J Biotechnol 219:5–6. https://doi.org/10.1016/j.jbiotec.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  15. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) DbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:445–451. https://doi.org/10.1093/nar/gks479

    Article  Google Scholar 

  16. Yang J, Roy A, Zhang Y (2013) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595. https://doi.org/10.1093/bioinformatics/btt447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181. https://doi.org/10.1093/nar/gkv342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Specht T, Dahlmann TA, Zadra I, Kürnsteiner H, Kück U (2014) Complete sequencing and chromosome-scale genome assembly of the industrial progenitor strain P2niaD18 from the penicillin producer Penicillium chrysogenum. Genome Announc 2:4–5. https://doi.org/10.1128/genomeA.00577-14

    Article  Google Scholar 

  19. Prata MB, Mussatto SI, Rodrigues LR, Teixeira JA (2010) Fructooligosaccharide production by Penicillium expansum. Biotechnol Lett 32:837–840. https://doi.org/10.1007/s10529-010-0231-y

    Article  CAS  PubMed  Google Scholar 

  20. Sangeetha PT, Ramesh MN, Prapulla SG (2004) Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochem 39:755–760. https://doi.org/10.1016/S0032-9592(03)00186-9

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge to CSIR-NEERI for providing essential resources for the research work [KRC No. CSIR-NEERI/KRC/2017/SEP/EBGD/2]. Vaibhav Gujar is thankful to University Grants Commission (UGC), New Delhi for providing Junior and Senior Research Fellowship for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman A. Khardenavis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gujar, V.V., Fuke, P., Khardenavis, A.A. et al. Annotation and De Novo Sequence Characterization of Extracellular β-Fructofuranosidase from Penicillium chrysogenum Strain HKF42. Indian J Microbiol 58, 227–233 (2018). https://doi.org/10.1007/s12088-017-0704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0704-y

Keywords

Navigation