Skip to main content
Log in

Foliar Treatment of Bacillus Methylotrophicus KE2 Reprograms Endogenous Functional Chemicals in Sesame to Improve Plant Health

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The present study was aimed to investigate the health of vegetative and reproductive parts of sesame plants during Bacillus methylotrophicus KE2 interaction by their pigments, sugars, organic acid, amino acids, hormones and antioxidant production analysis. In a green-house study, B. methylotrophicus KE2 was sprayed to sesame plants at late flowering stage. The bacterial treatment enhanced photosynthetic pigments of plants including pods than their controls. The shoots of plants had higher amount of sucrose, glucose, galactose, xylitol and malic acid, and while the pods of plants showed the more accumulation of sucrose, glucose, inulin and xylitol in bacterium treated plants. However, alanine, cysteine, valine, isoleucine, leucine, tyrosine, phenylalanine, arginine and proline content in shoots and cysteine in pods were increased by the effect of KE2 inoculation. Salicylic acid production was declined in shoots and increased in pods during bacterial exposure. In addition, abscisic acid concentration was lower in pods due to the effect of B. methylotrophicus KE2 in pods over controls. The total polyphenol synthesis was increased in shoots and pods of sesame plants by bacterial interaction. The results of this study revealed that foliar spray of B. methylotrophicus KE2 on sesame plants triggered the plant growth promoting and defense metabolites in vegetative and reproductive organs to improve the health status of sesame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hua JL, Liu GR, Huang JS (2012) Effect of continuous cropping of sesame on rhizospheric microbial communities. Acta Ecol Sin 32:2936–2942

    Article  CAS  Google Scholar 

  2. Radhakrishnan R, Shim KB, Lee BW, Hwang CD, Pae SB, Park CH, Kim SU, Lee CK, Baek IY (2013) IAA producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.). J Microbiol Biotechnol 23:856–863. doi:10.4014/jmb.1209.09045

    Article  CAS  PubMed  Google Scholar 

  3. Radhakrishnan R, Khag SM, Baek IY, Lee IJ (2014) Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. J Plant Interact 9:754–762. doi:10.1080/17429145.2014.930524

    Article  CAS  Google Scholar 

  4. Kang SM, Radhakrishnan R, You YH, Joo GJ, Lee IJ (2014) Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Ind J Microbiol 54:427–433. doi:10.1007/s12088-014-0476-6

    Article  CAS  Google Scholar 

  5. Kang SM, Radhakrishnan R, Youb YH, Khan AL, Park JM, Lee SM, Lee IJ (2015) Cucumber performance is improved by inoculation with plant growth-promoting microorganisms. Acta Agric Scand Sec B Soil Plant Sci 65:36–44. doi:10.1080/09064710.2014.960889

    CAS  Google Scholar 

  6. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20. doi:10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  7. Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124. doi:10.1016/j.plaphy.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  8. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent Pseudomonas. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129

    Article  CAS  PubMed  Google Scholar 

  9. Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24® Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr Bayer 1:72–93

    Google Scholar 

  10. Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221. doi:10.1016/j.biocontrol.2009.05.001

    Article  Google Scholar 

  11. Devi VS, Rao PA, Sharma SP, Sharma HC (2014) Interaction of acid exudates in chickpea with biological activity of Bacillus thuringiensis towards Helicoverpa armigera. J Appl Entomol 138:289–296. doi:10.1111/jen.12056

    Article  CAS  Google Scholar 

  12. Radhakrishnan R, Lee IJ (2016) Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem 109:181–189. doi:10.1016/j.plaphy.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  13. Arnon DI (1949) Copper enzyme in isolated chloroplasts and polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigment of photosynthetic biomembranes. Med Enzymol 148:350–382

    Article  CAS  Google Scholar 

  15. Hinesley LE, Pharr DM, Snelling LK, Funderburk SR (1992) Foliar raffinose and sucrose in four conifer species relationship to seasonal temperature. J Am Soc Hortic Sci 117:852–855

    CAS  Google Scholar 

  16. Kumazawa S, Hamasaka T, Nakayama T (2004) Antioxidant activity of propolis of various geographic origins. Food Chem 84:329–339. doi:10.1016/S0308-8146(03)00216-4

    Article  CAS  Google Scholar 

  17. Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361. doi:10.1046/j.1469-8137.2002.00482.x

    Article  CAS  Google Scholar 

  18. Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces - further evidence for astomatal pathway. Physiol Plant 132:491–502. doi:10.1111/j.1399-3054.2007.01023.x

    Article  CAS  PubMed  Google Scholar 

  19. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. doi:10.1146/annurev.arplant.57.032905.105441

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Chang L, Wang B, Wang D, Li P, Wang L, Yi X, Huang Q, Peng M, Guo A (2013) Comparative proteomics of Thellungiella halophila leaves under different salinity revealed chloroplast starch and soluble sugar accumulation played important roles in halophyte salt tolerance. Mol Cell Proteomics 12:2174–2195. doi:10.1074/mcp.M112.022475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thibaud MC, Gineste S, Nussaume L, Robaglia C (2004) Sucrose increases pathogenesis-related PR-2 gene expression in Arabidopsis thaliana through an SA-dependent but NPR1-independent signaling pathway. Plant Physiol Biochem 42:81–88. doi:10.1016/j.plaphy.2003.10.012

    Article  CAS  PubMed  Google Scholar 

  22. Stolle-Smits T, Beekhuizen JG, Kok MTC, Pijnenburg M, Recourt K, Derksen J, Voragen AGJ (1999) Changes in cell wall polysaccharides of green bean pods during development. Plant Physiol 121:363–372. doi:10.1104/pp.121.2.363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Louvet R, Rayon C, Domon JM, Rusterucci C, Fournet F, Leaustic A, Crepeau MJ, Ralet MC, Rihouey C, Bardor M, Lerouge P, Gillet F, Pelloux J (2011) Major changes in the cell wall during silique development in Arabidopsis thaliana. Phytochem 72:59–67. doi:10.1016/j.phytochem.2010.10.008

    Article  CAS  Google Scholar 

  24. Gonzalez-Rodriguez RM, Serrato R, Molina J, Aragon CE, Olalde V, Pulido LE, Dibut B, Lorenzo JC (2013) Biochemical and physiological changes produced by Azotobacter chroococcum (INIFAT5 strain) on pineapple in vitro-plantlets during acclimatization. Acta Physiol Plant 35:3483–3487. doi:10.1007/s11738-013-1373-z

    Article  CAS  Google Scholar 

  25. Radhakrishnan R, Lee IJ (2014) Effect of low dose of spermidine on physiological changes in salt stressed cucumber plants. Russian J Plant Physiol 61:90–96. doi:10.1134/S1021443714010129

    Article  CAS  Google Scholar 

  26. Fabian F, Blum H (1943) Relative taste potency of some basic food constituents and their competitive and compensatory action. Food Sci 8:179–193. doi:10.1111/j.1365-2621.1943.tb16560.x

    Article  CAS  Google Scholar 

  27. Werbach MR (2000) Nutritional strategies for treating chronic fatigue syndrome. Altern Med Rev 5:93–108

    CAS  PubMed  Google Scholar 

  28. Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants an important N uptake pathway? Soil Biol Biochem 37:413–423. doi:10.1016/j.soilbio.2004.08.008

    Article  CAS  Google Scholar 

  29. Kang S, Radhakrishnan R, Lee SM, Park YG, Kim AY, Seo CW, Lee IJ (2015) Enterobacter sp. SE992-induced regulation of amino acids, sugars, and hormones in cucumber plants improves salt tolerance. Acta Physiol Plant 37:149. doi:10.1007/s11738-015-1895-7

    Article  Google Scholar 

  30. Radhakrishnan R, Lee IJ (2013) Ameliorative effects of spermine against osmotic stress through antioxidants and abscisic acid changes in soybean pods and seeds. Acta Physiol Plant 35:263–269. doi:10.1007/s11738-012-1072-1

    Article  CAS  Google Scholar 

  31. Zhu SQ, Chen MW, Ji BH, Jiao DM, Liang JS (2011) Roles of xanthophylls and exogenous ABA in protection against NaCl induced photo-damage in rice (Oryza sativa L) and cabbage (Brassica campestris). J Exp Bot 62:4617–4625. doi:10.1093/jxb/err170

    Article  CAS  PubMed  Google Scholar 

  32. Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt tolerant and salt sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442. doi:10.1034/j.1399-3054.2000.100410.x

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors thank Rural Development Administration, Republic of Korea for providing financial support through Agenda Program (Project No. PJ01228603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12088_2017_666_MOESM1_ESM.doc

Supplementary Fig. 1. Effect of B. methylotrophicus KE2 on seed germination of sesame. Means (n = 30) followed by the same letter were not significantly different (p ≤ 0.05) according to Duncan’s multiple range test. (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, R., Lee, IJ. Foliar Treatment of Bacillus Methylotrophicus KE2 Reprograms Endogenous Functional Chemicals in Sesame to Improve Plant Health. Indian J Microbiol 57, 409–415 (2017). https://doi.org/10.1007/s12088-017-0666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0666-0

Keywords

Navigation