Skip to main content
Log in

Improvement in Oil Production by Increasing Malonyl-CoA and Glycerol-3-Phosphate Pools in Scenedesmus quadricauda

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In recent years, microalgae have attracted considerable interest as a biofuel resource owing to their rapid growth, tolerance to harsh conditions, and ability to accumulate a large amount of triacylglycerols (TAGs). However, the economic effectiveness of algal biofuel is still low. In this study, we attempted to increase oil production of the microalga Scenedesmus quadricauda by elevating intracellular malonyl-CoA and glycerol-3-phosphate (G3P) pools. To increase intracellular oil content, yeast-derived genes encoding acetyl-CoA carboxylase (ACC1), glycerol kinase (GPD1), and glycerol-3-phosphate dehydrogenase (GUT1) were overexpressed under the control of CaMV 35S and NOS promoters with SV40 large T antigen components. Fatty acid profiling, G3P content, and the number of cells with high oil content were analyzed by gas chromatography-mass spectrometry, G3P assay kit, and flow cytometry, respectively. Overexpression of ACC1 increased the total fatty acid content by 1.6-fold. Overexpression of GPD1 and GUT1 increased intracellular G3P content by 1.6- and 1.9-fold, respectively. Multi-gene expression of ACC1, GPD1, and GUT1 increased the number of cells with high oil content by 1.45-fold compared with that observed with the wild-type. This study is the first to report increased oil production by overexpression of the key genes (ACC1, GPD1, and GUT1) for TAG biosynthesis in microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brennan L, Owendea P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  2. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286. doi:10.1016/j.copbio.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  3. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental economic and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210. doi:10.1073/pnas.0604600103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Stephenson AL, Dennis JS, Scott SA (2008) Improving the sustainability of the production of biodiesel from oilseed rape in the UK. Chem Eng Res Des 86:427–440. doi:10.1016/j.psep.2008.06.005

    Article  CAS  Google Scholar 

  5. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program-biodiesel from algae. NREL/TP‐580‐24190, National Renewable Energy Laboratory, Golden, CO, USA

  6. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501. doi:10.1128/EC.00364-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shah GC, Yadav M, Tiwari A (2012) Assessment for the higher production of biodiesel from Scenedesmus dimorphus algal species. Erud J Biotechnol 1:1–9. doi:10.5958/j.0976-3015.2.2.005

    Google Scholar 

  8. Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Sustain Energy Rev 15:584–593. doi:10.1016/j.rser.2010.09.018

    Article  CAS  Google Scholar 

  9. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi:10.1111/j.1365-313X.2008.03492.x

    Article  CAS  PubMed  Google Scholar 

  10. Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acidbiosynthesis in microalgae for biofuel through protein–protein interactions. PLoS ONE 7:e42949. doi:10.137/journal.pone.0042949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726. doi:10.1098/rsif.2009.0322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Subrahmanyam S, Cronan JE (1998) Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 180:4596–4602

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493. doi:10.1016/j.biotechadv.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  14. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2010) Acyl-lipid metabolism. Arabidopsis Book 8: e0133. doi:10.1199/tab.0133

    Article  PubMed Central  PubMed  Google Scholar 

  15. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  16. Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74. doi:10.1186/1754-6834-5-74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Anand J, Arumugam M (2015) Enhanced lipid accumulation and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresour Technol 188:190–194. doi:10.1016/j.biortech.2014.12.097

    Article  CAS  PubMed  Google Scholar 

  18. Thevenieau F, Nicaud JM (2013) Microorganisms as sources of oils. OCL 20:D603. doi:10.1051/ocl/2013034

    Article  Google Scholar 

  19. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9. doi:10.1016/j.ymben.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  20. Kang L, Li J, Zhao T, Xiao F, Tang X, Thilmony R, He S, Zhou JM (2003) Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc Natl Acad Sci USA 100:3919–3924

    Article  Google Scholar 

  21. Harding JW, Pyeritz EA, Copeland ES, White HB (1975) Role of glycerol 3-phosphate dehydrogenase in glyceride metabolism. Effect of diet on enzyme activities in chicken liver. Biochem J 146:223–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO (2013) Development of a Saccharomyces cerevisiae strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate. Biotechnol Bioeng 110:343–347. doi:10.1002/bit.24623

    Article  CAS  PubMed  Google Scholar 

  23. Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441

    Article  CAS  PubMed  Google Scholar 

  24. Yang F, Long L, Sun X, Wu H, Li T, Xiang W (2014) Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Mar Drugs 12:1245–1257. doi:10.3390/md12031245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Stein JR (1996) Growth and mating of Gonium pectoral (Volvocales) in defined media. J Phycol 2:23–28

    Article  Google Scholar 

  27. CCAP (1998) Culture collection of algae and protozoa: catalogue of strains. Titus Wilson & Son Ltd, Kendal

    Google Scholar 

  28. Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362

    Article  CAS  PubMed  Google Scholar 

  29. Furuhashi T, Weckwerth W (2013) Introduction to lipid (FAME) analysis in algae using gas chromatography-mass spectrometry. The Handbook of Plant Metabolomics 215–225

  30. Da Silva TL, Santos CA, Reis A (2009) Multi-parameter flow cytometry as a tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel. Biotechnol Bioprocess Eng 14:330–337

    Article  CAS  Google Scholar 

  31. Andrade R, Leal R, Roseiro J, Reis A, Silva TL (2012) Monitoring Rhodosporidium toruloides NCYC 921 batch fermentations growing under carbon and nitrogen limitation by flow cytometry. W J Microbiol Biotechnol 28:1175–1184. doi:10.1007/s11274-011-0920-2

    Article  CAS  Google Scholar 

  32. Li X, Guo D, Cheng Y, Zhu F, Deng Z, Liu T (2014) Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Biotechnol Bioeng 111:1841–1852. doi:10.1002/bit.25239

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Chen H, Yu O (2014) A plant malonyl-CoA synthetase enhances lipid content and polyketide yield in yeast cells. Appl Microbiol Biotechnol 98:5435–5447. doi:10.1007/s00253-014-5612-z

    Article  CAS  PubMed  Google Scholar 

  34. Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD (2011) Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact 10:91. doi:10.1186/1475-2859-10-91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Shi S, Chen Y, Siewers V, Nielsen J (2014) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5:e01130-14. doi:10.1128/mBio.01130-14

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Research Foundation (NRF) of Korea Grant funded by the Korean Government (MOE) (MEST) [NRF-2010-0024596].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Hwan Yang or Gyuhwa Chung.

Additional information

Ahmed E. Gomma and Sung-Kwon Lee equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomma, A.E., Lee, SK., Sun, S.M. et al. Improvement in Oil Production by Increasing Malonyl-CoA and Glycerol-3-Phosphate Pools in Scenedesmus quadricauda . Indian J Microbiol 55, 447–455 (2015). https://doi.org/10.1007/s12088-015-0546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0546-4

Keywords

Navigation