Skip to main content
Log in

In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa)

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The need for replacing traditional pesticides with alternative agents for the management of agricultural pathogens is rising worldwide. In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. We examined the growth inhibition of three plant pathogenic Gram-negative bacterial strains by kiwi CPI and attempted to elucidate the potential mechanism of the growth inhibition. CPI influenced the growth of phytopathogenic bacteria Agrobacterium tumefaciens (76.2 % growth inhibition using 15 μM CPI), Burkholderia cepacia (75.6 % growth inhibition) and, to a lesser extent, Erwinia carotovora (44.4 % growth inhibition) by inhibiting proteinases that are excreted by these bacteria. Identification and characterization of natural plant defense molecules is the first step toward creation of improved methods for pest control based on naturally occurring molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ortelli D, Edder P, Corvi C (2005) Pesticide residues survey in citrus fruits. Food Addit Contam 22(5):423–428

    Article  PubMed  CAS  Google Scholar 

  2. White DG, Zhao S, Simjee S, Wagner DD, McDermott PF (2002) Antimicrobial resistance of foodborne pathogens. Microbes Infect 4(4):405–412

    Article  PubMed  CAS  Google Scholar 

  3. Pimentel DE (1997) Techniques for reducing pesticide use, economic and environmental benefits. Wiley, London

    Google Scholar 

  4. Jackson AO, Taylor CB (1996) Plant–microbe interactions: life and death at the interface. Plant Cell 8(10):1651–1668

    PubMed  CAS  Google Scholar 

  5. War AR, Paulraj MG, Buhroo AA, Ahmad T, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10)

  6. Anastasi A, Brown MA, Kembhavi AA, Nicklin MJ, Sayers CA, Sunter DC, Barrett AJ (1983) Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem J 211(1):129–138

    PubMed  CAS  Google Scholar 

  7. Margis R, Reis EM, Villeret V (1998) Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys 359(1):24–30

    Article  PubMed  CAS  Google Scholar 

  8. Martinez M, Abraham Z, Gambardella M, Echaide M, Carbonero P, Diaz I (2005) The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J Exp Bot 56(417):1821–1829

    Article  PubMed  CAS  Google Scholar 

  9. Benchabane M, Schluter U, Vorster J, Goulet MC, Michaud D (2010) Plant cystatins. Biochimie 92(11):1657–1666

    Article  PubMed  CAS  Google Scholar 

  10. Volpicella M, Leoni C, Costanza A, De Leo F, Gallerani R, Ceci LR (2011) Cystatins, serpins and other families of protease inhibitors in plants. Curr Protein Pept Sci 12(5):386–398

    Article  PubMed  CAS  Google Scholar 

  11. Kuroda M, Kiyosaki T, Matsumoto I, Misaka T, Arai S, Abe K (2001) Molecular cloning, characterization, and expression of wheat cystatins. Biosci Biotechnol Biochem 65(1):22–28

    Article  PubMed  CAS  Google Scholar 

  12. Abe M, Abe K, Kuroda M, Arai S (1992) Corn kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Molecular cloning and expression studies. Eur J Biochem 209(3):933–937

    Article  PubMed  CAS  Google Scholar 

  13. Pernas M, Lopez-Solanilla E, Sanchez-Monge R, Salcedo G, Rodriguez-Palenzuela P (1999) Antifungal activity of a plant cystatin. Mol Plant Microbe Interact 12(7):624–627

    Article  CAS  Google Scholar 

  14. Senthilkumar R, Cheng C-P, Yeh K-W (2010) Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol J 8(1):65–75

    Article  PubMed  CAS  Google Scholar 

  15. Urwin PE, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Characterization of two cDNAs encoding cysteine proteinases from the soybean cyst nematode Heterodera glycines. Parasitology 114:605–613

    PubMed  CAS  Google Scholar 

  16. Pernas M, Sanchez-Monge R, Gomez L, Salcedo G (1998) A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests. Plant Mol Biol 38(6):1235–1242

    Article  PubMed  CAS  Google Scholar 

  17. Popovic MM, Milovanovic M, Burazer L, Vuckovic O, Hoffmann-Sommergruber K, Knulst AC, Lindner B, Petersen A, Jankov R, Gavrovic-Jankulovic M (2010) Cysteine proteinase inhibitor Act d 4 is a functional allergen contributing to the clinical symptoms of kiwifruit allergy. Mol Nutr Food Res 54(3):373–380

    Article  PubMed  CAS  Google Scholar 

  18. Rassam M, Laing WA (2004) Purification and characterization of phytocystatins from kiwifruit cortex and seeds. Phytochemistry 65(1):19–30

    Article  PubMed  CAS  Google Scholar 

  19. Berandine S (2005) Growing kiwifruit. A Pacific Nortwest Extension Publications, Corvallis

    Google Scholar 

  20. Thomashow MF, Panagopoulos CG, Gordon MP, Nester EW (1980) Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature 283(5749):794–796

    Article  Google Scholar 

  21. Laplace F (1989) G. N. Agrios, Plant Pathology (3rd Edition). Academic Press Inc. ISBN: 0-12-044563-8. J Basic Microbiol 29(8):500

  22. Harboe N, Ingild A (1973) Immunization, isolation of immunoglobulins, estimation of antibody titre. Scand J Immunol Suppl 1:161–164

    Article  PubMed  CAS  Google Scholar 

  23. Liener IE, Friedensen B (1970) Ficin (E.C. 3.4.4.12.). Methods Enzymol 19:261–273

    Article  Google Scholar 

  24. Wesierska E, Saleh Y, Trziszka T, Kopec W, Siewinski M, Korzekwa K (2005) Antimicrobial activity of chicken egg white cystatin. World J Microbiol Biotechnol 21(1):59–64

    Article  CAS  Google Scholar 

  25. Boyes S, Strubi P, Marsh H (1997) Actinidin levels in fruit of Actinidia species and some Actinidia arguta rootstock scion combinations. LWT—food science and technology 30(4):379–389

    CAS  Google Scholar 

  26. Nieuwenhuizen NJ, Beuning LL, Sutherland PW, Sharma NN, Cooney JM, Bieleski LRF, Schroder R, MacRae EA, Atkinson RG (2007) Identification and characterisation of acidic and novel basic forms of actinidin, the highly abundant cysteine protease from kiwifruit. Funct Plant Biol 34(10):946–961

    Article  CAS  Google Scholar 

  27. Leplé JC, Bonadé-Bottino M, Augustin S, Pilate G, Lê Tân VD, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breed 1(4):319–328

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technological Development, Republic of Serbia, Grant No. 172049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Popovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popovic, M., Andjelkovic, U., Grozdanovic, M. et al. In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa). Indian J Microbiol 53, 100–105 (2013). https://doi.org/10.1007/s12088-012-0319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-012-0319-2

Keywords

Navigation