Skip to main content

Advertisement

Log in

A precision adjustable trajectory planning scheme for UAV-based data collection in IoTs

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

With the increasing popularity of the IoTs (Internet of Things), the efficient data collection with Unmanned Aerial Vehicles (UAVs) is demanded by numerous applications. The technical challenge, which restricts the deployment of the UAVs, is the high latency of the data collection. In this paper, we focus on the problem of trajectory planning, specifically, determination of how the UAVs traverse through the sensing field and the scheduling of the communication tasks with the IoT nodes. We first ignore the energy consumpti on of IoT nodes but relax it eventually. Therefore, the trajectory planning problem can be formulated as a special case of the traveling salesman problem with neighborhoods (TSP-N). We propose a Precision Adjustable Trajectory Planning (PATP) scheme, which can calculate the k-communication area based on the stratified grid approach and shorten the traveling trajectory of the UAV by reducing the data collection sites, to enable a tradeoff between execution time and calculation precision. We then take the realistic energy consumption of wireless communications into account, which is one of the key questions in researches of IoTs, to extend the network lifetime with the On-Demand PATP (OD-PATP) scheme. The simulation results show that the PATP scheme can obtain a 15% reduction in number of visiting point at least and the trajectory length obtained by the OD-PATP scheme can be shortened about 45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xu L, Collier R, Gregory MP (2017) Ohare, A Survey of Clustering Techniques in WSNs and Consideration of the Challenges of Applying Such to 5G IoT Scenarios. IEEE Internet Things J 4:1229–1249

    Article  Google Scholar 

  2. Gong D, Yang Y (2014) Low-latency SINR-based Data Gathering in Wireless Sensor Networks. IEEE Trans Wirel Commun 13:3207–3221

    Article  Google Scholar 

  3. He L, Pan J, Xu J (2013) A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements. IEEE Trans Mob Comput 12:1308–1320

    Article  Google Scholar 

  4. He L, Kong L, Tao J, Xu J, Pan J (2018) On-Demand Mobile data collection in Cyber-Physical systems. Wirel Commun Mob Comput:1–13

  5. Cheng C, Yu C (2016) Data Gathering in Wireless Sensor Networks: A combine-TSP-reduce Approach. IEEE Trans Veh Technol 65:2309–2324

    Article  Google Scholar 

  6. Francesco MD, Das SK, Anastasi G (2011) Data collection in wireless sensor networks with mobile elements: a survey. ACM Trans Sens Netw 8:1–31

    Article  Google Scholar 

  7. Zeng Y, Zhang R, Teng J (2016) Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun Mag 54:36–42

    Article  Google Scholar 

  8. Motlagh NH, Bagaa M, Taleb T (2017) UAV-Based IoT Platform: A Crowd Surveillance Use Case. IEEE Commun Mag 55:128–134

    Article  Google Scholar 

  9. Ebrahimi D, Sharafeddine S, Ho P, Assi C (2018) Data collection in wireless sensor networks using UAV and compressive data gathering. IEEE Glob Commun Conf:1–7

  10. Zhang J, Zeng Y, Zhang R (2018) UAV-Enabled Radio Access Network: Multi-mode Communication and Trajectory Design. IEEE Trans Signal Process 66:5269–5284

    Article  MathSciNet  Google Scholar 

  11. Cermakova I, Komarkova J (2016) Modelling a process of UAV data collection and processing. Int Conf Inf Soc:161–164

  12. Wu H, Wen Y, Zhang J, Wei Z, Zhang N, Tao X (2020) Energy-efficient and Secure Air-to-Ground Communication with Jittering UAV. IEEE Trans Veh Technol 69(4):3954–3967

    Article  Google Scholar 

  13. Motlagh NH, Taleb T, Arouk O (2016) Low-Altitude Unmanned aerial Vehicles-Based internet of things services: Comprehensive survey and future perspectives. IEEE Internet Things J 3:899–922

    Article  Google Scholar 

  14. Ghorbel MB, Rodriguez-Duarte D, Ghazzai H, Hossain MJ, Menouar H (2019) Joint Position and Travel Path Optimization for Energy Efficient Wireless Data Gathering using Unmanned Aerial Vehicles. IEEE Trans Veh Technol 68:2165–2175

    Article  Google Scholar 

  15. Abdulla AEAA, Fadlullah ZM, Nishiyama H, Kato N, Ono F, Miura R (2015) Toward Fair Maximization of Energy Efficiency in Multiple UAS-aided Networks: A Game-Theoretic Methodology. IEEE Trans Wirel Commun 14:305–316

    Article  Google Scholar 

  16. Wang Z, Liu R, Liu Q, Thompson JS, Kadoch M (2020) Energy-efficient Data Collection and Device Positioning in UAV-assisted IoT. IEEE Internet Things J 7:1122–1139

    Article  Google Scholar 

  17. Yang D, Wu Q, Zeng Y, Zhang R (2018) Energy Tradeoff in ground-to-UAV Communication via Trajectory Design. IEEE Trans Veh Technol 67:6721–6726

    Article  Google Scholar 

  18. Ebrahimi D, Sharafeddine S, Ho P, Assi C (2019) UAV-Aided Projection-based Compressive Data Gathering in Wireless Sensor Networks. IEEE Internet Things J 6:1893–1905

    Article  Google Scholar 

  19. Wu P, Xiao F, Sha C, Huang H, Sun L (2020) Trajectory Optimization for UAVs’ Efficient Charging in Wireless Rechargeable Sensor Networks. IEEE Trans Veh Technol 69:4207–4220

    Article  Google Scholar 

  20. Baek J, Han SI, Han Y (2020) Energy-Efficient UAV Routing for wireless sensor networks. IEEE Trans Veh Technol 69:1741–1750

    Article  Google Scholar 

  21. Mitchel JSB (2007) A PTAS for TSP with neighborhoods among fat regions in the plane. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 11–18

  22. Zhan C, Zeng Y, Zhang R (2018) Energy-Efficient Data collection in UAV enabled wireless sensor network. IEEE Wirel Commun Lett 7:328–331

    Article  Google Scholar 

  23. Gong J, Chang T, Shen C, Chen X (2018) Flight time minimization of UAV for data collection over wireless sensor networks. IEEE J Sel Areas Commun 36:1942–1954

    Article  Google Scholar 

  24. Mozaffari M, Saad W, Bennis M, Debbah M (2017) Mobile Internet of Things: Can UAVs Provide an Energy-Efficient Mobile Architecture?. IEEE Glob Commun Conf:1–6

  25. Rashed S, Soyturk M (2017) Effects of UAV mobility patterns on data collection in wireless sensor networks. IEEE international conference on communication, Networks and Satellite, pp 74–79

  26. Zeng Y, Zhang R, Lim TJ (2016) Throughput Maximization for UAV-enabled Mobile Relaying Systems. IEEE Trans Commun 64:4983–4996

    Article  Google Scholar 

  27. Say S, Inata H, Liu J, Shimamoto S (2016) Priority-based Data Gathering Framework in UAV-assisted Wireless Sensor Networks. IEEE Sens J 16:5785–5794

    Article  Google Scholar 

  28. Zeng Y, Zhang R (2016) Energy-Efficient UAV Communication with trajectory optimization. IEEE Trans Wirel Commun 16:3747–3760

    Article  Google Scholar 

  29. Tao J, He L, Zhuang Y, Pan J, Ahmadi M (2013) Sweeping and active skipping in wireless sensor networks with mobile elements. IEEE Glob Commun Conf:106–111

  30. Zhang R, Pan J, Xie D, Wang F (2016) NDCMC: A Hybrid Data Collection Approach For Large-Scale WSNs Using Mobile Element and Hierarchical Clustering. IEEE Internet Things J 3:533–543

    Article  Google Scholar 

  31. Abdulla AEAA, Fadlullah ZM, Nishiyama H, Kato N, Ono F, Miura R (2014) An Optimal Data Collection Technique for Improved Utility in UAV-aided Networks. IEEE Conf Comput Commun:736–744

  32. Zhan C, Lai H (2019) Energy Minimization in Internet-of-Things System based on Rotary-Wing UAV. IEEE Wirel Commun Lett 8:1341–1344

    Article  Google Scholar 

  33. Hua M, Wang Y, Wu Q, Dai H, Huang Y, Yang L (2019) Energy-efficient Cooperative Secure Transmission in multi-UAV-enabled Wireless Networks. IEEE Trans Veh Technol 68:7761–7775

    Article  Google Scholar 

  34. Li G, He J, Peng S, Jia W, Wang C, Niu J, Yu S (2019) Energy efficient data collection in Large-Scale internet of things via computation offloading. IEEE Internet Things J 6:4176–4187

    Article  Google Scholar 

  35. Bai X, Kumar S, Xuan D, Yun Z, Lai T (2006) Deploying Wireless Sensors to Achieve both Coverage and Connectivity. ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp 1–9

  36. Celik GD, Modiano EH (2012) Controlled mobility in stochastic and dynamic wireless networks. Queu Syst Theory Appl 72:251–277

    Article  MathSciNet  Google Scholar 

  37. Dumitrescu A, Toth CD (2016) Constant-Factor Approximation for TSP with disks. Comput Sci:243–248

  38. Berg MD, Cheong O, Kreveld MV, Overmars MH (2000) Computational geometry : Algorithms and applications. Math Gazette 19:333–334

    MATH  Google Scholar 

  39. Concorde TSP Solver (2013) http://www.tsp.gatech.edu/concorde,html

  40. Hajiaghayi M, Kleinberg R, Leighton T (2006) Improved lower and upper bounds for universal TSP in planar metrics. Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 22–26

  41. Platzman LK, Bartholdi JJ (1989) Spacefilling Curves and the Planar Travelling Salesman Problem. J ACM 36:719–737

    Article  MathSciNet  Google Scholar 

  42. Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An Application-Specific protocol architecture for wireless microsensor networks. IEEE Trans Wirel Commun 1:660–670

    Article  Google Scholar 

  43. Alhourani A, Kandeepan S, Jamalipour A (2014) Modeling Air-to-Ground Path Loss for Low Altitude Platforms in Urban Environments. IEEE Glob Commun Conf:1–6

  44. Zhan C, Lai H (2019) Energy Minimization in Internet-of-Things System based on Rotary-Wing UAV. IEEE Wirel Commun Lett 5:1341–1344

    Article  Google Scholar 

  45. Zeng Y, Xu J, Zhang R (2019) Energy minimization for wireless communication with Rotary-Wing UAV. IEEE Trans Wirel Commun 18:2329–2345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuyan Wang or Jun Tao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Tao, J., Gao, Y. et al. A precision adjustable trajectory planning scheme for UAV-based data collection in IoTs. Peer-to-Peer Netw. Appl. 14, 655–671 (2021). https://doi.org/10.1007/s12083-020-01006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-020-01006-0

Keywords

Navigation