Skip to main content
Log in

Fog computing for assisting and tracking elder patients with neurodegenerative diseases

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

U.S. hospitals transmit and manage great amounts of information with the avenue of Internet of things. This work departs from a real need detected by healthcare centers and hospitals in U.S., Spain and Ecuador. This work focuses on the application of fog computing for obtaining an app rich in visual content that will not overload U.S. hospital infrastructures even if it was used massively. The simulation results showed that the proposed fog-based approach could support a regular use (one day out of three on average) by 1% of patients of one of the most common neurodegenerative diseases in 14 states in U.S (i.e. 36,400 patients in total) with only a traffic of 528 KB per day on average when using one hospital per state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sodhro AH, Pirbhulal S, Sangaiah AK (2018) Convergence of IoT and product lifecycle management in medical health care. Futur Gener Comput Syst 86:380–391

    Article  Google Scholar 

  2. Farahani B, Firouzi F, Chang V, Badaroglu M, Constant N, Mankodiya K (2018) Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Futur Gener Comput Syst 78:659–676

    Article  Google Scholar 

  3. Collotta M, Pau G, Costa DG (2018) A fuzzy-based approach for energy-efficient Wi-Fi communications in dense wireless multimedia sensor networks. Comput Netw 134:127–139

    Article  Google Scholar 

  4. Sendra S, Parra L, Lloret J, Tomás J (2018) Smart system for children’s chronic illness monitoring. Inf Fusion 40:76–86

    Article  Google Scholar 

  5. Lloret J, Parra L, Taha M, Tomás J (2017) An architecture and protocol for smart continuous eHealth monitoring using 5G. Comput Netw 129:340–351

    Article  Google Scholar 

  6. Kao H-Y, Wei C-W, Yu M-C, Liang T-Y, Wu W-H, Wu YJ (2018) Integrating a mobile health applications for self-management to enhance telecare system. Telematics Inform 35(4):815–825

    Article  Google Scholar 

  7. Rahmani AM, Gia TN, Negash B , Anzanpour A, Azimi I, Jiang M, Liljeberg P (2018) Exploiting smart e-health gateways at the edge of healthcare Internet-of-things: a fog computing approach. Futur Gener Comput Syst 78:641–658

    Article  Google Scholar 

  8. Hu P, Dhelim S, Ning H, Qiu T (2017) Survey on fog computing: architecture, key technologies, applications and open issues. J Netw Comput Appl 98:27–42

    Article  Google Scholar 

  9. Wu W, Pirbhulal S, Sangaiah AK, Mukhopadhyay SC, Li G (2018) Optimization of signal quality over comfortability of textile electrodes for ECG monitoring in fog computing based medical applications. Futur Gener Comput Syst 86:515–526

    Article  Google Scholar 

  10. Fratu O, Pena C, Craciunescu R, Halunga S (2015) Fog computing system for monitoring Mild Dementia and COPD patients-Romanian case study. In: 2015 12th international conference on telecommunication in modern satellite, cable and broadcasting services (TELSIKS),. Nis, Serbia: IEEE, pp 123–128

  11. Kartsakli E, Lalos AS, Antonopoulos A, Tennina S, Di Renzo M, Alonso L, Verikoukis C (2014) A survey on M2M systems for mHealth: a wireless communications perspective. Sensors 14(10):18009–18052

    Article  Google Scholar 

  12. Kartsakli E, Antonopoulos A, Lalos AS, Tennina S, Di Renzo M, Alonso L, Verikoukis CV (2015) Reliable MAC design for ambient assisted living: moving the coordination to the cloud. IEEE Commun Mag 53(1):78–86

    Article  Google Scholar 

  13. Mahmoud MME, Rodrigues JJPC, Saleem K, Al-Muhtadi J, Kumar N, Korotaev V (2018) Towards energy-aware fog-enabled cloud of things for healthcare. Comput Electr Eng 67:58–69

    Article  Google Scholar 

  14. Regragui Y, Moussa N (2016) Agent-based system simulation of wireless battlefield networks. Comput Electr Eng 56:313–333

    Article  Google Scholar 

  15. Kilkki O, Kangasrääsiö A, Nikkilä R, Alahäivälä A, Seilonen I (2014) Agent-based modeling and simulation of a smart grid: a case study of communication effects on frequency control. Eng Appl Artif Intell 33:91–98

    Article  Google Scholar 

  16. Ouellet E, Boller B, Corriveau-Lecavalier N, Cloutier S, Belleville S (2018) The virtual shop: a new immersive virtual reality environment and scenario for the assessment of everyday memory. J Neurosci Methods 303:126–135

    Article  Google Scholar 

  17. Montenegro JMF, Argyriou V (2017) Cognitive evaluation for the diagnosis of Alzheimer’s disease based on turing test and virtual environments. Physiol Behav 173:42–51

    Article  Google Scholar 

  18. Doniger GM, Beeri MS, Bahar-Fuchs A, Gottlieb A, Tkachov A, Kenan H, Livny A, Bahat Y, Sharon H, Ben-Gal O et al (2018) Virtual reality-based cognitive-motor training for middle-aged adults at high Alzheimer’s disease risk: a randomized controlled trial. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 4:118–129

    Google Scholar 

  19. García-Magariño I, Bedia MG, Palacios-Navarro G (2018) FAMAP: a framework for developing m-Health Apps. In: World conference on information systems and technologies, vol 745 of advances in intelligent systems and computing, pp 850–859. Springer

  20. Alzheimer’s Association et al (2017) 2017 Alzheimer’s disease facts and figures. Alzheimers Dement 13(4):325–373

    Article  Google Scholar 

  21. García-Magariño I, Palacios-Navarro G, Lacuesta R (2017) TABSAOND: a technique for developing agent-based simulation apps and online tools with nondeterministic decisions. Simul Model Pract Theory 77:84–107

    Article  Google Scholar 

  22. García-Magariño I (2015) ABSTUR: an agent-based simulator for tourist urban routes. Expert systems with applications 42(12):5287–5302

    Article  Google Scholar 

  23. García-Magariño I, Gómez-Rodríguez A, González-Moreno JC, Palacios-Navarro G (2015) PEABS: a process for developing efficient agent-based simulators. Eng Appl Artif Intell 46:104–112

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed during the research stay of the first author in the Massachusetts General Hospital and Harvard University, funded by “Dpto. de Innovación, Investigación y Universidad del Gobierno de Aragón” through the program “FEDER Aragón 2014-2020 Construyendo Europa desde Aragón” (Ref: T49_17R). This work also acknowledges the research project “Construcción de un framework para agilizar el desarrollo de aplicaciones móviles en el ámbito de la salud” funded by University of Zaragoza and Foundation Ibercaja with grant reference JIUZ-2017-TEC-03. We also acknowledge support from “Universidad de Zaragoza”, “Fundación Bancaria Ibercaja” and “Fundación CAI” in the “Programa Ibercaja-CAI de Estancias de Investigación” with reference IT1/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Lloret.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Special issue on Fog Computing for Healthcare

Guest Editors: Han-Chieh Chao, Sana Ullah, Christos Verikoukis, and Ki-Il Kim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Magariño, I., Varela-Aldas, J., Palacios-Navarro, G. et al. Fog computing for assisting and tracking elder patients with neurodegenerative diseases. Peer-to-Peer Netw. Appl. 12, 1225–1235 (2019). https://doi.org/10.1007/s12083-019-00732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-019-00732-4

Keywords

Navigation