Skip to main content

Advertisement

Log in

Rare niches and the ecological equivalence of species

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Debate remains on the contributions of niche and neutral processes in structuring biological communities. Temporal variation in the extent to which these two processes may jointly operate makes the problem of resolving their roles even more daunting. Here, we gain insight into this problem by using deterministic and stochastic models of competitors to investigate how the occurrence of rare niches, in what is usually a neutrally structured community, affects species diversity. Rare niches are modeled by allowing each species access to unique resources, which occur with temporal variability. While results from the deterministic model are clear (rare niches provide stable coexistence to otherwise neutral competitors), demographic stochasticity complicates this picture. Stochastic rare niche models show parameter regimes where increases in rare niches actually increase extinction risk by amplifying the variance in population counts. We also use our stochastic model to evaluate the effectiveness of current empirical methods in resolving the difference between rare niche and neutral systems. We find that in many cases, stochastic variation makes niche and neutral systems indistinguishable, allowing for the possibility of niche systems to masquerade as neutral ones. These results highlight the need to better understand how demographic stochasticity and environmental variation can affect the maintenance of species diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145

    Article  CAS  PubMed  Google Scholar 

  • Adler PB, Drake JM (2008) Environmental variation, stochastic extinction, and competitive coexistence. Am Nat 172:186–195. doi:10.1086/591678

    Article  PubMed  Google Scholar 

  • Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJ (2013) Trait-based tests of coexistence mechanisms. Ecol Lett 16:1294–1306

    Article  PubMed  Google Scholar 

  • Adler PB, HilleRisLambers J, Kyriakidis PC et al (2006) Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc Natl Acad Sci 103:12793–12798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104. doi:10.1111/j.1461-0248.2006.00996.x

    Article  PubMed  Google Scholar 

  • Angert AL, Horst JL, Huxman TE, Venable DL (2010) Phenotypic plasticity and precipitation response in Sonoran Desert winter annuals. Am J Bot 97:405–411. doi:10.3732/ajb.0900242

    Article  PubMed  Google Scholar 

  • Angert AL, Huxman TE, Chesson P, Venable DL (2009) Functional tradeoffs determine species coexistence via the storage effect. Proc Natl Acad Sci 106:11641–11645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252–3260

    Article  PubMed  Google Scholar 

  • Bell G (2001) Neutral macroecology.  Science 293:2413–2418

  • Black AJ, McKane AJ (2012) Stochastic formulation of ecological models and their applications. Trends Ecol Evol 27:337–345

    Article  PubMed  Google Scholar 

  • Cáceres CE (1997) Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc Natl Acad Sci 94:9171–9175

    Article  PubMed  PubMed Central  Google Scholar 

  • Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84:1115–1128

    Article  Google Scholar 

  • Chesson P (2003) Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theor Popul Biol 64:345–357

    Article  PubMed  Google Scholar 

  • Chesson P (1991) A need for niches? Trends Ecol Evol 6:26–28. doi:10.1016/0169-5347(91)90144-M

    Article  CAS  PubMed  Google Scholar 

  • Chesson P (2000a) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Chesson P (2000b) General theory of competitive coexistence in spatially-varying environments. Theor Popul Biol 58:211–237

    Article  CAS  PubMed  Google Scholar 

  • Chesson P (1994) Multispecies competition in variable environments. Theor Popul Biol 45:227–276

    Article  Google Scholar 

  • Chesson P (2008) Quantifying and testing species coexistence mechanisms. Unity Divers. Reflect. Ecol. Leg. Ramon Margalef. Fundación BBVA, pp 119–164

  • Chesson P, Huntly N (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 150:519–553. doi:10.1086/286080

    Article  CAS  PubMed  Google Scholar 

  • Chesson P, Huntly N (1989) Short-term instabilities and long-term community dynamics. Trends Ecol Evol 4:293–298. doi:10.1016/0169-5347(89)90024-4

    Article  CAS  PubMed  Google Scholar 

  • Chesson PL (1986) Environmental variation and the coexistence of species. Community Ecol 240:54

    Google Scholar 

  • Chesson PL, Warner RR (1981) Environmental variability promotes coexistence in lottery competitive systems. Am Nat 117:923–943

    Article  Google Scholar 

  • Clutton-Brock T, Sheldon BC (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25:562–573. doi:10.1016/j.tree.2010.08.002

    Article  PubMed  Google Scholar 

  • De León LF, Podos J, Gardezi T et al (2014) Darwin’s finches and their diet niches: the sympatric coexistence of imperfect generalists. J Evol Biol 27:1093–1104

    Article  PubMed  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  CAS  Google Scholar 

  • Grant PR, Grant BR, Smith JN et al (1976) Darwin’s finches: population variation and natural selection. Proc Natl Acad Sci 73:257–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravel D, Guichard F, Hochberg ME (2011) Species coexistence in a variable world. Ecol Lett 14:828–839. doi:10.1111/j.1461-0248.2011.01643.x

    Article  PubMed  Google Scholar 

  • HilleRisLambers J, Adler PB, Harpole WS et al (2012) Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 43:227

    Article  Google Scholar 

  • Holt RD (2008) Theoretical perspectives on resource pulses. Ecology 89:671–681

    Article  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton Univ. Press, Princeton

    Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Jones SE, Lennon JT (2010) Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci U S A 107:5881–5886. doi:10.1073/pnas.0912765107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdan-Pineau H, David P, Crochet P-A (2012) Phenotypic plasticity allows the Mediterranean parsley frog Pelodytes punctatus to exploit two temporal niches under continuous gene flow. Mol Ecol 21:876–886

    Article  PubMed  Google Scholar 

  • Keizer J (1987) Statistical thermodynamics of nonequilibrium processes. Springer, New York

    Book  Google Scholar 

  • Kraft NJ, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580–582. doi:10.1126/science.1160662

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  Google Scholar 

  • Lande R, Engen S, Saether B-E (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes M, Holt R, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • Levin SA (1970) Community equilibria and stability, and an extension of the competitive exclusion principle. Am Nat 104:413–423

    Article  Google Scholar 

  • Lewontin RC, Cohen D (1969) On population growth in a randomly varying environment. Proc Natl Acad Sci U S A 62:1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. doi:10.1016/j.tree.2006.02.002

    Article  PubMed  Google Scholar 

  • McPeek MA, Gomulkiewicz R (2005) Assembling and depleting species richness inmetacommunities: insights from ecology, population genetics and macroevolution. In: Leibold MA, Holyoak M, Holt RD (eds) Metacommunities: Spatial Dynamics and Ecological Communities, University of Chicago Press, Chicago, IL, USA, pp 355–373

  • McPeek MA (2012) Intraspecific density dependence and a guild of consumers coexisting on one resource. Ecology 93:2728–2735

    Article  PubMed  Google Scholar 

  • Ovaskainen O, Meerson B (2010) Stochastic models of population extinction. Trends Ecol Evol 25:643–652. doi:10.1016/j.tree.2010.07.009

    Article  PubMed  Google Scholar 

  • Pfennig DW, Rice AM, Martin RA (2006) Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87:769–779

    Article  PubMed  Google Scholar 

  • Robinson BW, Wilson DS (1998) Optimal foraging, specialization, and a solution to Liem’s paradox. Am Nat 151:223–235

    Article  CAS  PubMed  Google Scholar 

  • Schoener TW (1982) The controversy over interspecific competition: despite spirited criticism, competition continues to occupy a major domain in ecological thought. Am Sci 70:586–595

    Google Scholar 

  • Siepielski AM, McPeek MA (2010) On the evidence for species coexistence: a critique of the coexistence program. Ecology 91:3153–3164

    Article  PubMed  Google Scholar 

  • Sterck F, Markesteijn L, Schieving F, Poorter L (2011) Functional traits determine trade-offs and niches in a tropical forest community. Proc Natl Acad Sci U S A 108:20627–20632. doi:10.1073/pnas.1106950108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D (1981) Resource competition and community structure. University Press, Princeton

    Google Scholar 

  • Vandermeer J (2011) Intransitive loops in ecosystem models: from stable foci to heteroclinic cycles. Ecol Complex 8:92–97

    Article  Google Scholar 

  • Weatherhead PJ (1986) How unusual are unusual events? Am Nat 128:150–154

    Article  Google Scholar 

  • Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses. Ecology 89:621–634

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Shurin for prodding our exploration of some of the ideas pursued here. P. Adler, S. Fey, M. McPeek, and two anonymous reviewers provided thoughtful comments on previous versions of this paper that sharpened the presentation of our ideas. This work was supported in part by the National Science Foundation grant DEB-1255318 awarded to A. M. Siepielski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Haney.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haney, S., Cattivera, M. & Siepielski, A.M. Rare niches and the ecological equivalence of species. Theor Ecol 8, 491–503 (2015). https://doi.org/10.1007/s12080-015-0267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-015-0267-7

Keywords

Navigation