Skip to main content
Log in

Inferring topology from dynamics in spatial networks

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

We examine the dynamics of oscillating populations in habitats described as networks of connected patches where the connections are not regular. This system would be typically analysed focusing either on the population dynamics, or measuring dispersal directly or indirectly. We focus on the question of the degree to which the dynamical patterns, as reflected in synchrony, reveal the underlying dispersal pathways. This would represent a bridge between two major spatial approaches: topological and dynamical. We show how local populations can be synchronized even if there is no direct dispersal route between them, while the stepping-stone populations are not synchronized. This leads to the surprising result that the topological structure of the underlying network is not reflected simply in patterns of synchrony across space in population dynamics. This shows that, with our current tools, the complex relationship between the underlying dispersal patterns and population dynamics prevent us from determining network structure through the observation of population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert E M, Fortuna M A, Godoy J A, Bascompte J (2013) Assessing the robustness of networks of spatial genetic variation. Eco Lett 16:86–93

    Article  Google Scholar 

  • Bjørnstad ON, Ims RA, Lambin X (1999a) Spatial population dynamics: analysing patterns and processes of population synchrony. Trends Ecol Evol 11:427–431

    Article  Google Scholar 

  • Bjørnstad ON, Stenseth NC, Saitoh T (1999b) Synchrony and scaling in dynamics of voles and mice in northern Japan. Ecology 80:622–637

    Article  Google Scholar 

  • Crooks KR, Sanjayan M (eds) (2006) Connectivity conservation. Cambridge University Press

  • Dyer R J, Nason J D (2004) Population graphs: the graph theoretic shape of genetic structure. Mol Ecol 13:1713–1727

    Article  PubMed  Google Scholar 

  • Eguíluz V M, Chilavo D R, Cecchi G A, Baliki M, Apkarian A V (2005) Scale-free brain functional networks. Phys Rev Lett 94:18102

    Article  Google Scholar 

  • Erdös P, Rényi A (1959) On random graphs {I}. Publ Math 6:290–297

    Google Scholar 

  • Fortuna M A, Albaladejo R G, Fernández L, Aparicio A, Bascompte J (2009) Networks of spatial genetic variation across species. P Natl Acad Sci USA 106:19044–19049

    Article  CAS  Google Scholar 

  • Gilarranz L J, Bascompte J (2012) Spatial network structure and metapopulation persistence. J Theor Biol 297:11–16

    Article  PubMed  Google Scholar 

  • Girvan M, Newman M E J (2002) Community structure in social and biological networks. P Natl Acad Sci USA 99:7821–7826

    Article  CAS  Google Scholar 

  • Goldwyn E E, Hastings A (2008) When can dispersal synchronize populations? Theor Popul Biol 73:395–402

    Article  PubMed  Google Scholar 

  • Goldwyn E E, Hastings A (2009) Small heterogeneity has large effects on synchronization of ecological oscillators. B Math Biol 71:130–144

    Article  Google Scholar 

  • Guimerà R, Amaral L A N (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanski I, Woiwod I P (1993) Spatial synchrony in the dynamics of moth and aphid populations. J Anim Ecol 62:656–668

    Article  Google Scholar 

  • Hanski I A, Gilpin M E (eds) (1997) Metapopulation biology, ecology, genetics and evolution. Academic Press, San Diego

  • Hastings A, Botsford L W (2006) Persistence of spatial populations depends on returning home. P Natl Acad Sci USA 103:6067–6072

    Article  CAS  Google Scholar 

  • Holland M D, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456:792–794

    Article  CAS  PubMed  Google Scholar 

  • Jordano P, García C, Godoy J A, García-Castaño J L (2007) Differential contribution of frugivores to complex seed dispersal patterns. P Natl Acad Sci USA 104:3278–3282

    Article  CAS  Google Scholar 

  • Kaneko K (1998) Modelling spatiotemporal dynamics in ecology, Springer-Verlag, chap Diversity, pp 27–41

  • Kirkpatrick S, Gelatt C D, Vecchi M P (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  PubMed  Google Scholar 

  • Liebhold A M, Koenig W D, Bjørnstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol S 35:467–490

    Article  Google Scholar 

  • Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    Article  CAS  PubMed  Google Scholar 

  • May R M (1972) Will a large complex system be stable? Nat 238:413–414

    Article  CAS  Google Scholar 

  • May R M, Oster G F (1976) Bifurcations and dynamic complexity in simple ecological models. Am Nat 110:573–599

    Article  Google Scholar 

  • Nathan R (2006) Long-distance dispersal of plants. Sicence 313:786–788

    Article  CAS  Google Scholar 

  • Powney G D, Roy D B, Chapman D, Brereton T, Oliver T H (2011) Measuring functional connectivity using long-term monitoring data. Methods Ecol Evol 2:527–533

    Article  Google Scholar 

  • Rasmussen D R, Bohr T (1987) Temporal chaos and spatial disorder. Phys Lett A 125:107–110

    Article  CAS  Google Scholar 

  • Ricker W E (1954) Stock and recruitment. J Fish Res Board Can 11(5):559–623

    Article  Google Scholar 

  • Rozenfeld F A, Arnaud-Haond S, Hernández-Garcá E, Eguíluz V M, Serrão E A, Duarte C M (2008) Network analysis identifies weak and strong links in a metapopulation system. P Natl Acad Sci USA 105:18824–18829

    Article  Google Scholar 

  • Schroeder M (1991) Fractals, chaos and power laws. W.H. Freeman and Co

  • Siegel D A, Mitarai S, Costello C J, Gaines S D, Kendall B E, Warner R R, Winters K B (2008) The stochastic nature of larval connectivity among nearshore marine populations. P Natl Acad Sci USA 105:8974–8979

    Article  CAS  Google Scholar 

  • Solé R V, Bascompte J, Valls J (1992) Nonequilibrium dynamics in lattice ecosystems: chaotic stability and dissipative structures. Chaos 2:387–395

    Article  PubMed  Google Scholar 

  • Stewart I (1989) Does God play dice? Blackwell, Oxford

    Google Scholar 

  • Stouffer D B, Bascompte J (2011) Compartmentalization increases food-web persistence. P Natl Acad Sci USA 108:3648–3652

    Article  CAS  Google Scholar 

  • Swearer S E, Caselle J E, Lea D W, Warner R R (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nat 402:799–802

    Article  CAS  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 85(5):1205–1218

    Article  Google Scholar 

  • Wysham D, Hastings A (2008) The coupled two-patch ricker population model: transients explained. B Math Biol 70:1013–1031

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Research Council through an Advanced Grant (to JB), the Spanish Ministry of Education trough a FPU PhD Fellowship (to LJG), and US National Science Foundation Grant EF-0742674 (to AH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. Gilarranz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 5.73 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilarranz, L.J., Hastings, A. & Bascompte, J. Inferring topology from dynamics in spatial networks. Theor Ecol 8, 15–21 (2015). https://doi.org/10.1007/s12080-014-0231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-014-0231-y

Keywords

Navigation