Skip to main content

Advertisement

Log in

Global versus local extinction in a network model of plant–pollinator communities

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

The loss of a species from an ecological community can trigger a cascade of additional extinctions; the complex interactions that comprise ecological communities make the dynamics and impacts of such a cascade challenging to predict. Previous studies have typically considered global extinctions, where a species cannot re-enter a community once it is lost. However, in some cases a species only becomes locally extinct, and may be able to reinvade from surrounding communities. Here, we use a dynamic, Boolean network model of plant–pollinator community assembly to analyze the differences between global and local extinction events in mutualistic communities. As expected, we find that compared to global extinctions, communities respond to local extinctions with lower biodiversity loss, and less variation in topological network properties. We demonstrate that in the face of global extinctions, larger communities suffer greater biodiversity loss than smaller communities when similar proportions of species are lost. Conversely, smaller communities suffer greater loss in the face of local extinctions. We show that targeting species with the most interacting partners causes more biodiversity loss than random extinctions in the case of global, but not local, extinctions. These results extend our understanding of how mutualistic communities respond to species loss, with implications for community management and conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    Article  PubMed  CAS  Google Scholar 

  • Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483(7388):205–208

    Article  PubMed  CAS  Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães PR, Loyola R, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(8):1227–1239

    Article  Google Scholar 

  • Arii K, Parrott L (2004) Emergence of non-random structure in local food webs generated from randomly structured regional webs. J Theor Biol 227:327–333

    Article  PubMed  CAS  Google Scholar 

  • Baiser B, Buckley HL, Gotelli NJ, Ellison AM (2012) Predicting food-web structure with metacommunity models. Oikos. doi:10.1111/j.1600-0706.2012.00005.x

    Google Scholar 

  • Barnosky A, Matzke N, Tomiya S, Wogan G, Swartz B, Quental T, Marshall C et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471(7336):51–57

    Article  PubMed  CAS  Google Scholar 

  • Barrows E (1976) Nectar robbing and pollination of Lantana camara (Verbenaceae). Biotropica 8(2):132–135

    Article  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38(1):567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián C, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci 100(16):9383–9387

    Article  PubMed  CAS  Google Scholar 

  • Bastolla U, Fortuna M, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458(7241):1018–1020

    Article  PubMed  CAS  Google Scholar 

  • Campbell C, Yang S, Albert R, Shea K (2011) A network model for plant–pollinator community assembly. Proc Natl Acad Sci 108(1):197–202

    Article  PubMed  CAS  Google Scholar 

  • Campbell C, Yang S, Shea K, Albert R (2012) Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Phys Rev E 86(2):021924

    Article  Google Scholar 

  • Dunn R, Harris N, Colwell R, Koh LP, Sodhi N (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc R Soc B: Biol Sci 276(1670):3037–3045

    Article  Google Scholar 

  • Dunne J, Williams R (2009) Cascading extinctions and community collapse in model food webs. Philos Trans R Soc B: Biol Sci 364(1524):1711–1723

    Article  Google Scholar 

  • Dunne J, Williams R, Martinez N (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5(4):558–567

    Article  Google Scholar 

  • Dunne J, Williams R, Martinez N (2004) Network structure and robustness of marine food webs. Mar Ecol Prog Ser 273:291–302

    Article  Google Scholar 

  • Estes J, Palmisano J (1974) Sea otters: their role in structuring nearshore communities. Science 185(4156):1058–1060

    Article  PubMed  CAS  Google Scholar 

  • Fortuna M, Bascompte J (2006) Habitat loss and the structure of plant–animal mutualistic networks. Ecol Lett 9(3):281–286

    Article  PubMed  Google Scholar 

  • Franzén M, Nilsson S (2009) Both population size and patch quality affect local extinctions and colonizations. Proc R Soc B: Biol Sci 277(1678):79–85

    Article  Google Scholar 

  • Hastings A, Wolin C (1989) Within-patch dynamics in a metapopulation. Ecology 70(5):1261–1266

    Article  Google Scholar 

  • Jabot F, Bascompte J (2012) Bitrophic interactions shape biodiversity in space. Proc Natl Acad Sci 109(12):4521–4526

    Article  PubMed  CAS  Google Scholar 

  • James A, Pitchford J, Plank M (2012) Disentangling nestedness from models of ecological complexity. Nature 487(7406):227–230

    Article  PubMed  CAS  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Article  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2006) The ecological consequences of complex topology and nested structure in pollination webs. In: Waser NM, Ollerton J (eds) Specialization and generalization in plant-pollinator interactions. University of Chicago Press, Chicago, pp 173–199

    Google Scholar 

  • Kaiser-Bunbury C, Muff S, Memmott J, Müller C, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13(4):442–452

    Article  PubMed  Google Scholar 

  • Memmott J, Waser NM, Price M (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond Ser B: Biol Sci 271(1557):2605–2611

    Article  Google Scholar 

  • Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Olesen JM, Bascompte J, Dupont Y, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci 104(50):19891–19896

    Article  PubMed  CAS  Google Scholar 

  • Petchey O, Eklöf A, Borrvall C, Ebenman B (2008) Trophically unique species are vulnerable to cascading extinction. Am Nat 171(5):568–579

    Article  PubMed  Google Scholar 

  • Peter C, Johnson S (2008) Mimics and magnets: the importance of color and ecological facilitation in floral deception. Ecology 89(6):1583–1595

    Article  PubMed  Google Scholar 

  • Ramos-Jiliberto R, Albornoz AA, Valdovinos FS, Smith-Ramírez C, Arim M, Armesto JJ, Marquet PA (2009) A network analysis of plant-pollinator interactions in temperate rain forests of Chiloe Island, Chile. Oecologia 160:697–706

    Article  PubMed  Google Scholar 

  • Ramos-Jiliberto R, Valdovinos FS, Moisset de Espanés P, Flores JD (2012) Topological plasticity increases robustness of mutualistic networks. J Anim Ecol 81:896–904

    Article  PubMed  Google Scholar 

  • Saadatpour A, Albert R (2012) Boolean modeling of biological regulatory networks: a methodology tutorial. Methods. doi:10.1016/j.ymeth.2012.10.012

    PubMed  Google Scholar 

  • Srinivasan U, Dunne J, Harte J, Martinez N (2007) Response of complex food webs to realistic extinction sequences. Ecology 88(3):671–682

    Article  PubMed  Google Scholar 

  • Stang M, Klinkhamer P, Waser NM, Stang I, van der Meijden E (2009) Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Ann Bot 103(9):1459–1469

    Article  PubMed  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329(5993):853–856

    Article  PubMed  Google Scholar 

  • Valdovinos FS, Ramos-Jiliberto R, Flores JD, Espinoza C, López G (2009) Structure and dynamics of pollination networks: the role of alien plants. Oikos 118:1190–1200

    Google Scholar 

  • Valdovinos FS, Moisset de Espanés P, Flores JD, Ramos-Jiliberto R (2012) Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos. doi:10.1111/j.1600-0706.2012.20830.x

    Google Scholar 

  • van Nouhuys S, Hanski I (2005) Metacommunities of butterflies and their parasitoids. In: Leibold M, Holt R, Holyoak M (eds) Metacommunities: spatial dynamics and ecological communities. Univ. Chicago Press, Chicago, pp 99–121

    Google Scholar 

  • Vázquez D, Aizen M (2004) Asymmetric specialization: a pervasive feature of plant–pollinator interactions. Ecology 85(5):1251–1257

    Article  Google Scholar 

  • Wang RS, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge members of the Shea research lab for helpful discussions during the preparation of this research. This work was supported by NSF grant DEB-0815373 and an NSF REU to K.S., NSF grant PHY 1205840 to R.A., and the Biology Department (Presbyterian College) to SY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaBar, T., Campbell, C., Yang, S. et al. Global versus local extinction in a network model of plant–pollinator communities. Theor Ecol 6, 495–503 (2013). https://doi.org/10.1007/s12080-013-0182-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-013-0182-8

Keywords

Navigation