Skip to main content

Advertisement

Log in

Robustness of size–structure across ecological networks in pelagic systems

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

The study of biomass size distributions has become an important tool for addressing aquatic ecosystem complexity and the consequences of anthropogenic disturbances. However, it remains unclear how changes in pelagic food web topology affect the biomass size–structure. Employing a dynamic multispecies bioenergetic consumer-resource model, we simulated biomass trajectories over time in 10,000 virtual networks of varying topology to address which food web properties are important in determining size–structure in pelagic systems. The slopes of the normalized biomass size spectra (NBSS) and Pareto’s shape parameter (γ) of our modeled communities are consistent with theoretically expected values for steady-state systems and empirical values reported for several aquatic ecosystems. We found that the main drivers of the NBSS slope and Pareto’s γ were the slope of the relationship between body mass and trophic level, the maximum trophic level of the food web, and the stability of total community biomass. Our analyses showed a clear conservative trend in pelagic community size–structure as demonstrated by the robustness of the NBSS slope and Pareto’s γ against most of the topological changes in virtual networks. Nevertheless, these analyses also caution that major disturbances in large-bodied or top-trophic level individuals may disrupt this stable pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arino O, Shin Y-J, Mullon C (2004) A mathematical derivation of size spectra in fish populations. C R Biologies 327:245–254

    Article  PubMed  Google Scholar 

  • Bascompte J, Melian CJ, Sala E (2005) Interaction strength combinations and the overfishing of a marine food web. Proc Natl Acad Sci 102:5443–5447

    Article  PubMed  CAS  Google Scholar 

  • Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J Anim Ecol 44:331–340

    Article  Google Scholar 

  • Berlow EL, Brose U, Martinez ND (2008) The “Goldilocks factor” in food webs. Proc Natl Acad Sci 105:4079–4080

    Article  PubMed  CAS  Google Scholar 

  • Berlow EL, Dunne JA, Martinez ND, Stark PB, Williams RJ, Brose U (2009) Simple prediction of interaction strengths in complex food webs. Proc Natl Acad Sci 106:187–191

    Article  PubMed  CAS  Google Scholar 

  • Bianchi G, Gislason H, Graham K, Hill L, Jin X, Koranteng K, Manickchand-Heileman S, Payá I, Sainsbury K, Sanchez F, Zwanenburg K (2000) Impact of fishing on size composition and diversity of demersal fish communities. ICES J Mar Sci 57:558–571

    Article  Google Scholar 

  • Blanchard JL, Dulvy NK, Jennings S, Ellis JR, Pinnegar JK, Tidd A, Kell LT (2005) Do climate and fishing influence size-based indicators of Celtic Sea fish community structure? ICES J Mar Sci 62:405–411

    Article  Google Scholar 

  • Blanco JM, Echevarría F, García C (1994) Dealing with size spectra: some conceptual and mathematical problems. Sci Mar 58:17–29

    Google Scholar 

  • Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272

    Article  Google Scholar 

  • Brose U, Berlow EL, Martinez ND (2005a) Scaling up keystone effects from simple to complex ecological networks. Ecol Lett 8:1317–1325

    Article  Google Scholar 

  • Brose U, Pavao-Zuckerman M, Eklof A, Bengtsson J, Berg M, Cousins SH, Mulder C, Verhoef HA, Wolters V (2005b) Spatial aspects of food webs. In: de Ruiter PC, Wolters V, Moore JC (eds) Dynamic food webs: multispecies assemblages, ecosystem development and environmental change. Academic Press, New York, pp 463–469

    Google Scholar 

  • Brose U, Williams RJ, Martinez ND (2006a) Allometric scaling enhances stability in complex food webs. Ecol Lett 9:1228–1236

    Article  PubMed  Google Scholar 

  • Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF, Blanchard JL, Brey T, Carpenter SR, Cattin MF, Cushing L, Dawah HA, Dell T, Edwards F, Harper-Smith S, Jacob U, Ledger ME, Martinez ND, Memmott J, Mintenbeck K, Pinnegar JK, Rall BC, Rayner TS, Reuman DC, Ruess L, Ulrich W, Williams RJ, Woodward G, Cohen JE (2006b) Consumer-resource body-size relationships in natural food webs. Ecology 87(10):2411–2417

    Article  PubMed  Google Scholar 

  • Brown JH, Gillooly JF (2003) Ecological food webs: high-quality data facilitate theoretical unification. Proc Natl Acad Sci 100:1467–1468

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Cicerone R, Orr J, Brewer P, Haugan P, Merlivat L, Ohsumi T, Pantoja S, Poertner HO, Urban E (2004) The ocean in a high-CO2 world. Oceanography 17(3):72–78

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703

    Article  Google Scholar 

  • Cohen JE, Carpenter SR (2005) Species’ average body mass and numerical abundance in a community food web: statistical questions in estimating the relationship. In: de Ruiter PC, Wolters V, Moore JC (eds) Dynamic food webs: multispecies assemblages, ecosystem development and environmental change. Academic Press, New York, pp 137–156

    Google Scholar 

  • Cohen JE, Jonsson T, Carpenter SR (2003) Ecological community description using the food web, species abundance, and body size. Proc Natl Acad Sci U S A 100:1781–1786

    Article  PubMed  CAS  Google Scholar 

  • Cousins SH (1985) Ecologists build pyramids again. New Sci 106:50–54

    Google Scholar 

  • Cury P, Shannon L, Shin Y (2003) The functioning of marine ecosystems: a fisheries perspective. In: Sinclair M, Valdimarsson G (eds) Responsible fisheries in the marine ecosystem. FAO, Rome, pp 103–123

    Chapter  Google Scholar 

  • Daan N, Gislason H, Pope JG, Rice JC (2005) Changes in the North Sea fish community: evidence of indirect effects of fishing? ICES J Mar Sci 62:177–188

    Article  Google Scholar 

  • De Roos AM, Schellekens T, Van Kooten T, Van De Wolfshaar K, Claessen D, Persson L (2008) Simplifying a physiologically structured population model to a stage-structured biomass model. Theor Popul Biol 73:47–62

    Article  PubMed  Google Scholar 

  • DeAngelis DL, Goldstein RA, O’Neill RV (1975) A model for trophic interactions. Ecology 56:881–892

    Article  Google Scholar 

  • Dickie LM, Kerr SR, Boudreau PR (1987) Size-dependent processes underlying regularities in ecosystem structure. Ecol Monogr 57:233–250

    Article  Google Scholar 

  • Digel C, Riede JO, Brose U (2011) Body sizes, cumulative and allometric degree distributions across natural food webs. Oikos 120(4):503–509

    Article  Google Scholar 

  • Drgas A, Radziejewska T, Warzocha J (1998) Biomass size spectra of near-shore shallow-water benthic communities in the Gulf of Gdansk (Southern Baltic Sea). PSZN Mar Ecol 19:209–228

    Article  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2004) Network structure and robustness of marine food webs. Mar Ecol Prog Ser 273:291–302

    Article  Google Scholar 

  • Duplisea DE (2000) Benthic organism biomass size-spectra in the Baltic Sea in relation to the sediment environment. Limnol Oceanog 45(3):558–568

    Article  CAS  Google Scholar 

  • Ebenman B, Law R, Borrvall C (2004) Community viability analysis: the response of ecological communities to species loss. Ecology 85:2591–2600

    Article  Google Scholar 

  • Emmerson MC, Raffaelli D (2004) Predator–prey body size, interaction strength and the stability of a real food web. J Anim Ecol 73:399–409

    Article  Google Scholar 

  • Fussmann GF, Blasius B (2005) Community response to enrichment is highly sensitive to model structure. Biol Lett 1:9–12

    Article  PubMed  Google Scholar 

  • Gaedke U (1993) Ecosystem analysis based on biomass-size distributions: a case study of a plankton community in a large lake. Limnol Oceanogr 38:112–127

    Article  Google Scholar 

  • Gaudard M, Ramsey P, Stephens M (2006) Interactive data mining and design of experiments: the JMP® partition and custom design platforms. North Haven Group

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  PubMed  CAS  Google Scholar 

  • Gilpin ME (1972) Enriched predator–prey systems: theoretical stability. Science 177:902–904

    Article  PubMed  CAS  Google Scholar 

  • Gin KYH, Guo J, Cheong HF (1998) A size-based ecosystem model for pelagic waters. Ecol Model 112:53–72

    Article  Google Scholar 

  • Gislason H, Rice J (1998) Modelling the response of size and diversity spectra of fish assemblages to changes in exploitation. ICES J Mar Sci 55:362–370

    Article  Google Scholar 

  • Han BP, Straskraba M (1998) Size dependence of biomass spectra and population density. I. The effect of size scales and size intervals. J Theor Biol 191:259–265

    Article  Google Scholar 

  • Hardy AC (1924) The herring in relation to its animate environment, part 1. The food and feeding habits of the herring. Fish Investig Lond Ser II 7:1–53

    Google Scholar 

  • Hughes T, Bellwood D, Folke C, Steneck R, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trend Ecol Evol 20(7):381–386

    Article  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegnar M, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  PubMed  CAS  Google Scholar 

  • Jennings S, Dinmore TA, Duplisea DE, Warr KJ, Lancaster JE (2001) Trawling disturbance can modify benthic production processes. J Anim Ecol 70:459–475

    Article  Google Scholar 

  • Jeschke JM, Koop M, Tollrian R (2004) Consumer–food systems: why type I functional responses are exclusive to filter feeders. Biol Rev 79:337–349

    Article  PubMed  Google Scholar 

  • Jonsson T, Ebenman B (1998) Effects of predator–prey body size ratios on the stability of food chains. J Theor Biol 193:407–417

    Article  PubMed  Google Scholar 

  • Lima ID, Olson DB, Doney SC (2002) Intrinsic dynamics and system stability properties of size-structured pelagic ecosystem models. J Plankton Res 24:533–556

    Article  Google Scholar 

  • Lindeman RL (1942) The trophic–dynamic aspect of ecology. Ecology 23:399–418

    Article  Google Scholar 

  • Link JS, Stockhausen WT, Methratta ET et al (2005) Food-web theory in marine ecosystems. In: Belgrano A, Scharler U (eds) Aquatic food webs: an ecosystem approach. Oxford University Press, New York, pp 98–113

    Chapter  Google Scholar 

  • Lundvall D, Svanbäck R, Persson L, Byström P (1999) Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Can J Fish Aquat Sci 56:1285–1292

    Google Scholar 

  • Marquet PA, Quiñones RA, Abades S, Labra F, Tognelli M, Arim M, Rivadeneira M (2005) Scaling and power-laws in ecological systems. J Exp Biol 208:1749–1769

    Article  PubMed  Google Scholar 

  • Maury O, Faugeras B, Shin YJ, Poggiale JC, Ben Ari TC, Marsac F (2007) Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: the model. Prog Oceanogr 74(4):479–499

    Article  Google Scholar 

  • May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • McCann K, Hastings A (1998) Re-evaluating the omnivory–stability relationship in food webs. Proc R Soc Lond B Biol Sci 264(1385):1249–1254

    Article  Google Scholar 

  • McCann K, Yodzis P (1994) Biological conditions for chaos in a three-species food chain. Ecology 75:561–564

    Article  Google Scholar 

  • Neutel A-M, Heesterbeek JAP, De Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    Article  PubMed  CAS  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres FC Jr (1998) Fishing down marine food webs. Science 279:860–863

    Article  PubMed  CAS  Google Scholar 

  • Pauly D, Christensen V, Walters C (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci 57:697–706

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  PubMed  CAS  Google Scholar 

  • Petersen CGJ (1918) The sea bottom and its production of fish food. Rep Dan Biol Stn 25:1–62

    Google Scholar 

  • Platt T, Denman K (1977) Organization in the pelagic ecosystem. Helgol Wiss Meeresunters 30:575–581

    Article  Google Scholar 

  • Platt T, Denman K (1978) The structure of the pelagic marine ecosystems. Rapp P-V Reun Cons Int Explor Mer 173:60–65

    Google Scholar 

  • Platt T, Lewis MR, Geider R (1984) Thermodynamics of the pelagic ecosystem: elementary closure conditions for biological production in the open ocean. Flows of energy and materials in marine ecosystems: Theory and practice. NATO Conference Series 4. Mar Sci 13:49–84

    CAS  Google Scholar 

  • Polovina JJ (1984) Model of a coral reef ecosystem. I. The ECOPATH model and its application to French frigate shoals. Coral Reefs 3:1–11

    Article  Google Scholar 

  • Pope JG, Rice JC, Daan N, Jennings S, Gislason H (2006) Modelling an exploited marine fish community with 15 parameters e results from a simple size-based model. ICES J Mar Sci 63:1029–1044

    Google Scholar 

  • Quiñones RA, Platt T, Rodríguez J (2003) Patterns of biomass size spectra from oligotrophic waters of the Northwest Atlantic. Prog Oceanogr 57:405–427

    Article  Google Scholar 

  • Quintana XD, Boix D, Badosa A, Brucet S, Compte J, Gascón S, López-Flores R, Sala J, Moreno_Amich R (2006) Community structure in mediterranean shallow lentic ecosystems: size-based vs. taxon-based approaches. Limnetica 25(1–2):303–320

    Google Scholar 

  • Quiroga E, Quiñones RA, Palma M, Sellanes J, Gallardo VA, Gerdes D, Rowe G (2005) Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile. Estuar Coast Shelf Sci 62:217–231

    Article  CAS  Google Scholar 

  • Rall BC, Guill C, Brose U (2007) Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117(2):202–213

    Article  Google Scholar 

  • Rall BC, Kalinkat G, Vucic-Pestic O, Ott D, Brose U (2011) Taxonomic versus allometric constraints on nonlinear interaction strengths. Oikos 120(4):483–492

    Article  Google Scholar 

  • Real LA (1977) Kinetics of functional response. Am Nat 111:289–300

    Google Scholar 

  • Riede JO, Rall BC, Banasek-Richter C, Navarrete SA, Wieters EA, Emmerson MC, Jacob U, Brose U (2010) Scaling of food web properties with diversity and complexity across ecosystems. Adv Ecol Res 42:139–170

    Article  Google Scholar 

  • Riede JO, Brose U, Ebenman B, Jacob U, Thompson R, Townsend CR, Jonsson T (2011) Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol Lett 14(2):169–178

    Article  PubMed  Google Scholar 

  • Rodríguez J, Mullin M (1986) Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol Oceanogr 31(2):361–370

    Article  Google Scholar 

  • Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation of ecosystems in ecological time. Science 171:385–387

    Article  PubMed  CAS  Google Scholar 

  • Rossberg AG, Ishii R, Amemiya T, Itoh K (2008) The top-down mechanism for body-mass–abundance scaling. Ecology 89(2):567–580

    Article  PubMed  CAS  Google Scholar 

  • Rothschild BJ, Osborn TR (1988) Small-scale turbulence and plankton contact rates. J Plankton Res 10:465–474

    Article  Google Scholar 

  • Schwinghamer P (1981) Characteristic size distributions of integral benthic communities. Can J Fish Aquat Sci 38:1255–1263

    Article  Google Scholar 

  • Schwinghamer P (1983) Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Mar Ecol Prog Ser 13:151–166

    Article  Google Scholar 

  • Schwinghamer P (1985) Observations on size-structure and pelagic coupling of some shelf and abyssal benthic communities. In: Gibbs PE (ed) Proceedings 19th European Marine Biology Symposium. Cambridge University Press, Cambridge, pp 347–359

    Google Scholar 

  • Sheldon RW, Prakash A, Sutcliffe WH Jr (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340

    Article  Google Scholar 

  • Sheldon RW, Sutcliffe WH, Paranjape MA (1977) Structure of the plagic food chain and relationship between plankton and fish production. J Fish Res Board Can 34:2344–2353

    Article  Google Scholar 

  • Shin YJ, Cury P (2004) Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Can J Fish Aquat Sci 61:414–431

    Article  Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc B 273:1–9

    Article  PubMed  Google Scholar 

  • Skalski GT, Gilliam JF (2001) Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82:3083–3092

    Article  Google Scholar 

  • Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS (2004) Extinction and ecosystem function in the marine benthos. Science 306:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Sprules WG, Munawar M (1986) Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can J Fish Aquat Sci 43:1789–1794

    Article  Google Scholar 

  • Stobberup KA, Inejih CAO, Traore S, Monteiro C, Amorim P, Erzini K (2005) Analysis of size spectra off northwest Africa: a useful indicator in tropical areas? ICES J Mar Sci 62:424–429

    Article  Google Scholar 

  • Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21:65–66

    Article  Google Scholar 

  • Trenkel VM, Rochet MJ (2003) Performance indicators derived from abundance estimates for detecting the impact of fishing on a fish community. Can J Fish Aqua Sci 60:67–85

    Article  Google Scholar 

  • Vidondo B, Prairie Y, Blanco JM, Duarte CM (1997) Some aspects of the análisis of size spectra in aquatic ecology. Limnol Ocean 42(1):184–192

    Article  Google Scholar 

  • Vucic-Pestic O, Rall BC, Kalinkat G, Brose U (2010) Allometric functional response model: body masses constrain interaction strengths. J Anim Ecol 79:249–256

    Article  PubMed  Google Scholar 

  • Walters C, Christensen V, Pauly D (1997) Structuring dynamic models of exploited ecosystems from trophic mass balance assessments. Rev Fish Biol Fish 7(2):139–172

    Article  Google Scholar 

  • Warwick RM (1984) Species size distributions in marine benthic communities. Oecologia 61:32–41

    Article  Google Scholar 

  • West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592

    Article  PubMed  Google Scholar 

  • Whitfield J (2004) Ecology’s big hot idea. PLoS Biol 2:2023–2027

    CAS  Google Scholar 

  • Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Martinez ND (2004a) Limits to trophic levels and omnivory in complex food webs: theory and data. Am Nat 163:458–468

    Article  PubMed  Google Scholar 

  • Williams RJ, Martinez ND (2004b) Stabilizaton of chaotic and non-permanent food web dynamics. Eur Phys J B 38:297–303

    Article  CAS  Google Scholar 

  • Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trend Ecol Evol 20(7):402–409

    Article  Google Scholar 

  • Worm B, Duffy E (2003) Biodiversity, productivity and stability in real food webs. Trend Ecol Evol 18(12):628–632

    Article  Google Scholar 

  • Yodzis P (1998) Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem. J Anim Ecol 67:635–658

    Article  Google Scholar 

  • Yodzis P, Innes S (1992) Body size and consumer-resource dynamics. Am Nat 139:1151–1175

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the valuable support of the members of the Ecological Network Lab (Darmstadt, Germany). Paúl Gómez-Canchong was funded by a Doctoral and Short Term Stay scholarship provided by the Deutscher Akademischer Austausch Dienst, (DAAD, Germany). Renato A. Quiñones and Paúl Gómez-Canchong were funded by the COPAS-Sur Austral Program (Programa Bicentenario de Ciencia y Tecnología Grant PFB-31/2007, CONICYT, Chile). Ulrich Brose acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, BR 2315/4-1). The authors would like to thank three anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paúl Gómez-Canchong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 260 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Canchong, P., Quiñones, R.A. & Brose, U. Robustness of size–structure across ecological networks in pelagic systems. Theor Ecol 6, 45–56 (2013). https://doi.org/10.1007/s12080-011-0156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-011-0156-7

Keywords

Navigation