Skip to main content

Advertisement

Log in

Marine fisheries as ecological experiments

  • Review Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

There are many examples of ecological theory informing fishery management. Yet fisheries also provide tremendous opportunities to test ecological theory through large-scale, repeated, and well-documented perturbations of natural systems. Although treating fisheries as experiments presents several challenges, few comparable tests exist at the ecosystem scale. Experimental manipulations of fish populations in lakes have been widely used to develop and test ecological theory. Controlled manipulation of fish populations in open marine systems is rarely possible, but fisheries data provide a valuable substitute for such manipulations. To highlight the value of marine fisheries data, we review leading ecological theories that have been empirically tested using such data. For example, density dependence has been examined through meta-analysis of spawning stock and recruitment data to show that compensation (higher population growth) occurs commonly when populations are reduced to low levels, while depensation (the Allee effect) is rare. As populations decline, spatial changes typically involve populations contracting into high-density core habitats while abandoning less productive habitats. Fishing down predators may result in trophic cascades, possibly shifting entire ecosystems into alternate stable states, although alternate states can be maintained by both ecological processes and continued fishing pressure. Conversely, depleting low trophic level groups may affect central-place foragers, although these bottom–up effects rarely appear to impact fish—perhaps because many fish populations have been reduced to the point that they are no longer prey limited. Fisheries provide empirical tests for diversity–stability relations: catch data suggest that more diverse systems recover faster and provide more stable returns than less diverse systems. Fisheries have also provided examples of the tragedy of the commons, as well as counter-examples where common property resources have been managed successfully. We also address two barriers to use of fisheries data to answer ecological questions: differences in terminology for similar concepts and misuse of records of fishery landings (catch data) as a proxy for biomass trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alder J, Campbell B, Karpouzi V, Kaschner K, Pauly D (2008) Forage fish: from ecosystems to markets. Annu Rev Environ Resour 33:153–166

    Article  Google Scholar 

  • Andersen KH, Pedersen M (2010) Damped trophic cascades driven by fishing in model marine ecosystems. Proc R Soc B 277:795–802

    Article  PubMed  CAS  Google Scholar 

  • Anderson CNK, Hsieh C-H, Sandin SA, Hewitt R, Hollowed A, Beddington J, May RM, Sugihara G (2008) Why fishing magnifies fluctuations in fish abundance. Nature 452:835–839

    Article  PubMed  CAS  Google Scholar 

  • Auster PJ, Link JS (2009) Compensation and recovery of feeding guilds in a northwest Atlantic shelf fish community. Mar Ecol Prog Ser 382:163–172

    Article  Google Scholar 

  • Babcock RC, Kelly S, Shears NT, Walker JW, Willis TJ (1999) Changes in community structure in temperate marine reserves. Mar Ecol Prog Ser 189:125–134

    Article  Google Scholar 

  • Bakun A (1996). Patterns in the ocean: ocean processes and marine population dynamics. University of California Sea Grant in cooperation with Centro de Investigaciones Biologicas de Noroeste, San Diego, CA

  • Bakun A (2006) Wasp-waist populations and marine ecosystem dynamics: navigating the “predator pit” topographies. Prog Oceanogr 68:271–288

    Article  Google Scholar 

  • Bakun A, Broad K (2003) Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on El Nino effects in the Pacific. Fish Oceanogr 12:458–473

    Article  Google Scholar 

  • Bakun A, Weeks SJ (2006) Adverse feedback sequences in exploited marine systems: are deliberate interruptive actions warranted? Fish Fish 7:316–333

    Google Scholar 

  • Barkai A, McQuaid C (1988) Predator–prey role reversal in a marine benthic ecosystem. Science 242:62–64

    Article  PubMed  CAS  Google Scholar 

  • Barrowman NJ, Myers RA (2000) Still more spawner-recruitment curves: the hockey stick and its generalizations. Can J Fish Aquat Sci 57:665–676

    Article  Google Scholar 

  • Baum JK, Worm B (2009) Cascading top–down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714

    Article  PubMed  Google Scholar 

  • Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA (2003) Collapse and conservation of shark populations in the Northwest Atlantic. Science 299:389–392

    Article  PubMed  CAS  Google Scholar 

  • Beare D, Hölker F, Engelhard GH, McKenzie E, Reid DG (2010) An unintended experiment in fisheries science: a marine area protected by war results in Mexican waves in fish numbers-at-age. Naturwissenschaften 97:797–808

    Article  PubMed  CAS  Google Scholar 

  • Beddington JR, Agnew DJ, Clark CW (2007) Current problems in the management of marine fisheries. Science 316:1713–1716

    Article  PubMed  CAS  Google Scholar 

  • Berkes F, Feeny D, McCay BJ, Acheson JM (1989) The benefits of the commons. Nature 340:91–93

    Article  Google Scholar 

  • Berkes F, Hughes TP, Steneck RS, Wilson JA, Bellwood DR, Crona B, Folke C, Gunderson LH, Leslie HM, Norberg J, Nyström M, Olsson P, Österblom H, Scheffer M, Worm B (2006) Globalization, roving bandits, and marine resources. Science 311:1557–1558

    Article  PubMed  CAS  Google Scholar 

  • Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. Fish Investig 19(Series II):533

    Google Scholar 

  • Birkeland C, Lucas JS (1990) Acanthaster planci: major management problem of coral reefs. CRC Press, West Palm Beach

    Google Scholar 

  • Bohnsack JA (1982) Effects of piscivorous predator removal on coral reef fish community structure. In: Caillet GM, Simenstad CA (eds) Gutshop ’81: Fish food habits and studies. Washington Sea Grant, Seattle, pp 258–267

    Google Scholar 

  • Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537

    Article  Google Scholar 

  • Branch TA (2008) Not all fisheries will be collapsed in 2048. Mar Pol 32:38–39

    Article  Google Scholar 

  • Branch TA, Matsuoka K, Miyashita T (2004) Evidence for increases in Antarctic blue whales based on Bayesian modelling. Mar Mamm Sci 20:726–754

    Article  Google Scholar 

  • Branch TA, Hilborn R, Haynie AC, Fay G, Flynn L, Griffiths J, Marshall KN, Randall JK, Scheuerell JM, Ward EJ, Young M (2006) Fleet dynamics and fishermen behavior: lessons for fisheries managers. Can J Fish Aquat Sci 63:1647–1668

    Article  Google Scholar 

  • Branch TA, Watson R, Fulton EA, Jennings S, McGilliard CR, Pablico GT, Ricard D, Tracey SR (2010) The trophic fingerprint of marine fisheries. Nature 468(7322):431–435

    Article  PubMed  CAS  Google Scholar 

  • Branch TA, Jensen OP, Ricard D, Ye Y, Hilborn R (2011) Contrasting global trends in marine fishery status obtained from catches and from stock assessments. Cons Bio 25:777–786

    Google Scholar 

  • Brander K (1981) Disappearance of common skate Raia batis from Irish Sea. Nature 290:48–49

    Article  Google Scholar 

  • Brodeur RD, Sugisaki H, Hunt GL (2002) Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Mar Ecol Prog Ser 233:89–103

    Article  Google Scholar 

  • Brodeur RD, Decker MB, Ciannelli L, Purcell JE, Bond NA, Stabeno PJ, Acuna E, Hunt GL (2008) Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Prog Oceanogr 77:103–111

    Article  Google Scholar 

  • Bromley DW (2009) Abdicating responsibility: the deceits of fisheries policy. Fisheries 34:280–290

    Article  Google Scholar 

  • Carpenter RC (1988) Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. Proc Natl Acad Sci U S A 85:511–514

    Article  PubMed  CAS  Google Scholar 

  • Carpenter RC (1990) Mass mortality of Diadema antillarum. 1. Long-term effects on sea urchin population dynamics and coral reef algal communities. Mar Biol 104:67–77

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF (1996) The trophic cascade in lakes. Cambridge University Press, Cambridge, p 399

    Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639

    Article  Google Scholar 

  • Carpenter SR, Chisholm SW, Krebs CJ, Schindler DW, Wright RF (1995) Ecosystem experiments. Science 269:324–327

    Article  PubMed  CAS  Google Scholar 

  • Carpenter SR, Kitchell JF, Cottingham KL, Schindler DE, Christensen DL, Post DM, Voichick N (1996) Chlorophyll variability, nutrient input, and grazing: evidence from whole-lake experiments. Ecology 77:725–735

    Article  Google Scholar 

  • Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE (2001) Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71:163–186

    Article  Google Scholar 

  • Casini M, Hjelm J, Molinero JC, Lovgren J, Cardinale M, Bartolino V, Belgrano A, Kornilovs G (2009) Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proc Natl Acad Sci U S A 106:197–202

    Article  PubMed  CAS  Google Scholar 

  • Chavez FP, Ryan J, Lluch-Cota SE, Ñiquen CM (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299:217–221

    Article  PubMed  CAS  Google Scholar 

  • Christy FT (1973) Fisherman quotas: a tentative suggestion for domestic management. Occasional Paper Series Law of the Sea Institute University of Rhode Island, p 19

  • Clark CW (1973) The economics of overexploitation. Science 181:630–634

    Article  PubMed  CAS  Google Scholar 

  • Clemente S, Hernandez JC, Brito A (2009) Evidence of the top-down role of predators in structuring sublittoral rocky-reef communities in a Marine Protected Area and nearby areas of the Canary Islands. ICES J Mar Sci 66:64–71

    Article  Google Scholar 

  • Costello C, Gaines SD, Lynham J (2008) Can catch shares prevent fisheries collapse? Science 321:1678–1681

    Article  PubMed  CAS  Google Scholar 

  • Cowan JH, Houde ED (1993) Relative predation potentials of scyphomedusae, ctenophores and planktivorous fish on ichthyoplankton in Chesapeake Bay. Mar Ecol Prog Ser 95:55–65

    Article  Google Scholar 

  • Crawford RJM (2004) Accounting for food requirements of seabirds in fisheries management—the case of the South African purse-seine fishery. Afr J Mar Sci 26:197–203

    Article  Google Scholar 

  • Crawford RJM (2007) Food, fishing and seabirds in the Benguela upwelling system. J Ornithol 148:S253–S260

    Article  Google Scholar 

  • Csirke J (1980) Recruitment in the Peruvian anchovy and its dependence on the adult population. Rapp P-v Réun Cons Int Explor Mer 177:307–313

    Google Scholar 

  • Cury P, Bakun A, Crawford RJM, Jarre A, Quiñones RA, Shannon LJ, Verheye HM (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57:603–618

    Article  Google Scholar 

  • Daskalov GM, Grishin AN, Rodionov S, Mihneva V (2007) Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proc Natl Acad Sci U S A 104:10518–10523

    Article  PubMed  CAS  Google Scholar 

  • Dayton PK (1971) Competition, disturbance, and community reorganization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389

    Article  Google Scholar 

  • de Mutsert K, Cowan JH Jr, Essington TE, Hilborn R (2008) Reanalyses of Gulf of Mexico fisheries data: landings can be misleading in assessments of fisheries and fisheries ecosystems. Proc Natl Acad Sci 105:2740–2744

    Article  PubMed  Google Scholar 

  • Denney NH, Jennings S, Reynolds JD (2002) Life-history correlates of maximum population growth rates in marine fishes. Proc R Soc Lond (Biol) 269:2229–2237

    Article  Google Scholar 

  • deYoung B, Rose GA (1993) On recruitment and distribution of Atlantic cod (Gadus morhua) off Newfoundland. Can J Fish Aquat Sci 50:2729–2741

    Article  Google Scholar 

  • Dillingham PW, Skalski JR, Ryding KE (2006) Fine-scale geographic interactions between Steller sea lion (Eumetopias jubatus) trends and local fisheries. Can J Fish Aquat Sci 63:107–119

    Article  Google Scholar 

  • Doak DF, Bigger D, Harding EK, Marvier MA, O’Malley RE, Thomson D (1998) The statistical inevitability of stability–diversity relationships in community ecology. Am Nat 151:264–276

    Article  PubMed  CAS  Google Scholar 

  • Dorn MW (2002) Advice on West Coast rockfish harvest rates from Bayesian meta-analysis of stock–recruit relationships. North Am J Fish Manag 22:280–300

    Article  Google Scholar 

  • Duffy DC (1983) Environmental uncertainty and commercial fishing: effects on Peruvian guano birds. Biol Conserv 26:227–238

    Article  Google Scholar 

  • Dulvy NK, Freckleton RP, Polunin NVC (2004) Coral reef cascades and the indirect effects of predator removal by exploitation. Ecol Lett 7:410–416

    Article  Google Scholar 

  • Duplisea DE, Blanchard F (2005) Relating species and community dynamics in an heavily exploited marine fish community. Ecosystems 8:899–910

    Article  Google Scholar 

  • Essington TE (2010a) Trophic cascades in open ocean ecosystems. In: Terborgh J, Estes JA (eds) Trophic cascades: predators, prey and the changing dynamics of nature. Island Press, Washington, DC, p 488

    Google Scholar 

  • Essington TE (2010b) Ecological indicators display reduced variation in North American catch share fisheries. Proc Natl Acad Sci 107:754–759

    Article  PubMed  CAS  Google Scholar 

  • Essington TE, Schindler DE, Olson RJ, Kitchell JF, Boggs C, Hilborn R (2002) Alternative fisheries and the predation rate of yellowfin tuna in the eastern Pacific Ocean. Ecol Appl 12:724–734

    Article  Google Scholar 

  • Essington TE, Beaudreau AH, Wiedenmann J (2006) Fishing through marine food webs. Proc Natl Acad Sci U S A 103:3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Estes JA, Palmisano JF (1974) Sea otters: their role in structuring nearshore communities. Science 185:1058–1060

    Article  PubMed  CAS  Google Scholar 

  • Feeny D, Berkes F, McCay BJ, Acheson JM (1990) The tragedy of the commons: twenty-two years later. Hum Ecol 18:1–19

    Article  PubMed  CAS  Google Scholar 

  • Feeny D, Hanna S, McEvoy AF (1996) Questioning the assumptions of the “tragedy of the commons” model of fisheries. Land Econ 72:187–205

    Article  Google Scholar 

  • Fogarty MJ, Murawski SA (1998) Large-scale disturbance and the structure of marine systems: fishery impacts on Georges Bank. Ecol Appl (Suppl) 8:S6–S22

    Google Scholar 

  • Fogarty MJ, Cohen EB, Michaels WL, Morse WW (1991) Predation and the regulation of sand lance populations: an exploratory analysis. ICES Mar Sci Symp 193:120–124

    Google Scholar 

  • Frank KT, Brickman D (2000) Allee effects and compensatory population dynamics within a stock complex. Can J Fish Aquat Sci 57:513–517

    Article  Google Scholar 

  • Frank KT, Leggett WC (1994) Fisheries ecology in the context of ecological and evolutionary theory. Annu Rev Ecol Syst 25:401–422

    Article  Google Scholar 

  • Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen M, Wanless S, Harris MP, Rothery P, Wilson LJ (2004) The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. J Appl Ecol 41:1129–1139

    Article  Google Scholar 

  • Fretwell SD, Lucas HL (1970) On territorial behaviour and other factors influencing the habitat distribution of birds. I. Theoretical development. Acta Biotheor 19:16–36

    Article  Google Scholar 

  • Friedlander AM, DeMartini EE (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Mar Ecol Prog Ser 230:253–264

    Article  Google Scholar 

  • Frisk MG, Miller TJ, Martell SJD, Sosebee K (2008) New hypothesis helps explain elasmobranch “outburst” on Georges Bank in the 1980s. Ecol Appl 18:234–245

    Article  PubMed  CAS  Google Scholar 

  • Fromentin J-M, Powers JE (2005) Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish 6:281–306

    Google Scholar 

  • Gelcich S, Hughes TP, Olsson P, Folke C, Defeo O, Fernández M, Foale S, Gunderson LH, Rodríguez-Sickert C, Scheffer M, Steneck RS, Castilla JC (2010) Navigating transformations in governance of Chilean marine coastal resources. Proc Natl Acad Sci. doi:10.1073/pnas.1012021107

  • Gezelius SS (2007) The social aspects of fishing effort: technology and community in Norway’s blue whiting fisheries. Hum Ecol 35:587–599

    Article  Google Scholar 

  • Gibson AJF, Bowlby HD, Amiro PG (2008) Are wild populations ideally distributed? Variations in density-dependent habitat use by age class in juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 65:1667–1680

    Article  Google Scholar 

  • Gifford DJ, Collie JS, Steele JH (2009) Functional diversity in a marine fish community. ICES J Mar Sci 66:791–796

    Article  Google Scholar 

  • Gillis DM (2003) Ideal free distributions in fleet dynamics: a behavioral perspective on vessel movement in fisheries analysis. Can J Zool 81:177–187

    Article  Google Scholar 

  • Gordon HS (1954) The economic theory of a common-property resource: the fishery. J Polit Econ 62:124–142

    Article  Google Scholar 

  • Grafton RQ, Kompas T, Hilborn RW (2007) Economics of overexploitation revisited. Science 318:1601

    Article  PubMed  CAS  Google Scholar 

  • Graham WM (2001) Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linné) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia 451:97–111

    Article  Google Scholar 

  • Greene CH, Pershing AJ (2007) Climate drives sea change. Science 315:1084–1085

    Article  PubMed  CAS  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control and competition. Amer Nat 94:421–425

    Article  Google Scholar 

  • Hampton J, Sibert JR, Kleiber P, Maunder MN, Harley SJ (2005) Decline of Pacific tuna populations exaggerated? Nature 434:E1–E2

    Article  PubMed  CAS  Google Scholar 

  • Hamre J (1994) Biodiversity and exploitation of the main fish stocks in the Norwegian-Barents Sea ecosystem. Biodivers Conserv 3:473–492

    Article  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Article  CAS  Google Scholar 

  • Harley SJ, Myers RA, Dunn A (2001) Is catch-per-unit-effort proportional to abundance? Can J Fish Aquat Sci 58:1760–1772

    Article  Google Scholar 

  • Hay ME (1984) Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical? Ecology 65:446–454

    Article  Google Scholar 

  • Hecky RE, Campbell P, Rosenberg DM (1994) Introduction to experimental lakes and natural processes: 25 years of observing natural ecosystems at the experimental lakes area. Can J Fish Aquat Sci 51:2721–2722

    Article  Google Scholar 

  • Hilborn R (2007) Moving to sustainability by learning from successful fisheries. Ambio 36:296–303

    Article  PubMed  Google Scholar 

  • Hilborn R, Litzinger E (2009) Causes of decline and potential for recovery of Atlantic cod populations. Open Fish Sci J 2:32–38

    Article  Google Scholar 

  • Hilborn R, Branch TA, Ernst B, Magnusson A, Minte-Vera CV, Scheuerell MD, Valero JL (2003a) State of the world’s fisheries. Annu Rev Enc Resour 28:359–399

    Article  Google Scholar 

  • Hilborn R, Quinn TP, Schindler DE, Rogers DE (2003b) Biocomplexity and fisheries sustainability. Proc Natl Acad Sci U S A 100:6564–6568

    Article  PubMed  CAS  Google Scholar 

  • Hilborn R, Punt AE, Orensanz J (2004a) Beyond band-aids in fisheries management: fixing world fisheries. Bull Mar Sci 74:493–507

    Google Scholar 

  • Hilborn R, Stokes K, Maguire J-J, Smith T, Botsford LW, Mangel M, Orensanz J, Parma A, Rice J, Bell J, Cochrane KL, Garcia S, Hall SJ, Kirkwood GP, Sainsbury K, Stefansson G, Walters C (2004b) When can marine reserves improve fisheries management? Ocean Coast Manag 47:197–205

    Article  Google Scholar 

  • Hixon MA, Brostoff WN (1996) Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol Monogr 66:67–90

    Article  Google Scholar 

  • Hjermann DO, Ottersen G, Stenseth NC (2004) Competition among fishermen and fish causes the collapse of Barents Sea capelin. Proc Natl Acad Sci 101:11679–11684

    Article  PubMed  CAS  Google Scholar 

  • Hobday AJ, Tegner MJ, Haaker PL (2001) Over-exploitation of a broadcast spawning marine invertebrate: decline of the white abalone. Rev Fish Biol Fisheries 10:493–514

    Article  Google Scholar 

  • Hölker F, Beare D, Dörner H, di Natale A, Rätz H-J, Temming A, Casey J (2007) Comment on “Impacts of biodiversity loss on ocean ecosystem services”. Science 316:1285c

    Article  CAS  Google Scholar 

  • Hsieh C-H, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G (2006) Fishing elevates variability in the abundance of exploited species. Nature 443:859–862

    Article  PubMed  CAS  Google Scholar 

  • Hughes TP, Reed DC, Boyle MJ (1987) Herbivory on coral reefs: community structure following mass mortalities of sea urchins. J Exp Mar Biol Ecol 113:39–59

    Article  Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2000) Supply-side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology 81:2241–2249

    Article  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Huldberg O, McCook L, Motschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  PubMed  CAS  Google Scholar 

  • Hunsicker ME, Essington TE, Watson R, Sumaila UR (2010) The value of cephalopods to global marine fisheries. Fish Fish. doi:10.1111/j.1467-2979.2010.00369.x

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Hutchings J (1996) Spatial and temporal variation in the density of northern cod and a review of hypotheses for the stock’s collapse. Can J Fish Aquat Sci 53:943–962

    Article  Google Scholar 

  • Hutchings JA (2000a) Collapse and recovery of marine fishes. Nature 406:882–885

    Article  PubMed  CAS  Google Scholar 

  • Hutchings JA (2000b) Numerical assessment in the front seat, ecology and evolution in the back seat: time to change drivers in fisheries and aquatic sciences? Mar Ecol Prog Ser 208:299–303

    Article  Google Scholar 

  • Hutchings JA (2001) Influence of population decline, fishing, and spawner variability on the recovery of marine fishes. J Fish Biol 59:306–322

    Article  Google Scholar 

  • Hutchings JA, Reynolds JD (2004) Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54:297–309

    Article  Google Scholar 

  • Hutchings JA, Walters C, Haedrich RL (1997) Is scientific inquiry incompatible with government information control? Can J Fish Aquat Sci 54:1198–1210

    Article  Google Scholar 

  • Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317:58–62

    Article  PubMed  CAS  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  PubMed  CAS  Google Scholar 

  • Jaenike J (2007) Comment on “Impacts of biodiversity loss on ocean ecosystem services”. Science 316:1285a

    Article  CAS  Google Scholar 

  • Jahncke J, Checkley DM, Hunt GL (2004) Trends in carbon flux to seabirds in the Peruvian upwelling system: effects of wind and fisheries on population regulation. Fish Oceanogr 13:208–223

    Article  Google Scholar 

  • Jennings S, Kaiser MJ (1998) The effects of fishing on marine ecosystems. Adv Mar Biol 34:201–352

    Article  Google Scholar 

  • Jennings S, Polunin NVC (1997) Impacts of predator depletion by fishing on the biomass and diversity of non-target reef fish communities. Coral Reefs 16:71–82

    Article  Google Scholar 

  • Jennings S, Grandcourt EM, Polunin NVC (1995) The effects of fishing on the diversity, biomass and trophic structure of Seychelles’ reef fish communities. Coral Reefs 14:225–235

    Google Scholar 

  • Jensen OP, Miller TJ (2005) Geostatistical analysis of the abundance and winter distribution patterns of the blue crab Callinectes sapidus in Chesapeake Bay. Trans Am Fish Soc 134:1582–1598

    Article  Google Scholar 

  • Jensen OP, Ortega-Garcia S, Martell SJD, Ahrens RNM, Domeier ML, Walters CJ, Kitchell JF (2010) Local management of a “highly migratory species”: the effects of long-line closures and recreational catch-and-release for Baja California striped marlin fisheries. Prog Oceanogr 86:176–186

    Article  Google Scholar 

  • Johannes RE (1978) Traditional marine conservation methods in Oceania and their demise. Annu Rev Ecol Syst 9:349–364

    Article  Google Scholar 

  • Johannes RE (2002) The renaissance of community-based marine resource management in Oceania. Annu Rev Ecol Syst 33:317–340

    Article  Google Scholar 

  • Kaschner K, Watson R, Christensen V, Trites AW, Pauly D (2001) Modeling and mapping trophic overlap between marine mammals and commercial fisheries in the North Atlantic. In: Zeller D, Watson R, Pauly D (eds) Fisheries impacts on North Atlantic ecosystems: catch, effort, and national/regional data sets. University of British Columbia, Vancouver

    Google Scholar 

  • Krebs CJ, Boutin S, Boonstra R, Sinclair ARE, Smith JNM, Dale MRT, Martin K, Turkington R (1995) Impact of food and predation on the snowshoe hare cycle. Science 269:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Krkošek M, Ford JS, Morton A, Lele S, Myers RA, Lewis MA (2007) Declining wild salmon populations in relation to parasites from farm salmon. Science 318:1772–1775

    Article  PubMed  CAS  Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Lange AM (1991) Alternative survey indices for predicting availability of longfin squid to seasonal Northwest Atlantic fisheries. North Am J Fish Manag 11:443–450

    Article  Google Scholar 

  • Larkin PA (1978) Fisheries management—an essay for ecologists. Annu Rev Ecol Syst 9:57–73

    Article  Google Scholar 

  • Leavitt PR, Carpenter SR, Kitchell JF (1989) Whole-lake experiments: the annual record of fossil pigments and zooplankton. Limnol Oceanogr 34:700–717

    Article  Google Scholar 

  • Liermann M, Hilborn R (1997) Depensation in fish stocks: a hierarchic Bayesian meta-analysis. Can J Fish Aquat Sci 54:1976–1984

    Google Scholar 

  • Liermann M, Hilborn R (2001) Depensation: evidence, models and implications. Fish Fish 2:33–58

    Google Scholar 

  • Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol Monogr 40:23–47

    Article  Google Scholar 

  • Link JS, Ford MD (2006) Widespread and persistent increase of Ctenophora in the continental shelf ecosystem off NE USA. Mar Ecol Prog Ser 320:153–159

    Article  Google Scholar 

  • Link JS, Garrison LP, Almeida FP (2002) Ecological interactions between elasmobranchs and groundfish species on the northeastern US continental shelf. I. Evaluating predation. North Am J Fish Manag 22:550–562

    Article  Google Scholar 

  • Lynam CP, Hay SJ, Brierley AS (2005) Jellyfish abundance and climatic variation: contrasting responses in oceanographically distinct regions of the North Sea, and possible implications for fisheries. J Mar Biol Assoc UK 85:435–450

    Article  Google Scholar 

  • Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:R492–R493

    Article  PubMed  CAS  Google Scholar 

  • MacCall AD (1976) Density dependence of catchability coefficient in the California Pacific sardine, Sardinops sagaz caerulea, purse seine fishery. Cal Coop Ocean Fish 18:136–148

    Google Scholar 

  • MacCall AD (1990) Dynamic geography of marine fish populations. Washington Sea Grant Program, University of Washington Press, Seattle

    Google Scholar 

  • Mace PM (2004) In defence of fisheries scientists, single-species models and other scapegoats: confronting the real problems. Mar Ecol Prog Ser 274:285–291

    Google Scholar 

  • Mace PM, Doonan IJ (1988). A generalized bioeconomic simulation model for fish dynamics. In: New Zealand Fishery Assessment Research Document 88/4, p. 47. P.O. Box 297. Fisheries Research Center, Wellington, New Zealand

  • Magnuson JJ (1991) Fish and fisheries ecology. Ecol Appl 1:13–26

    Article  Google Scholar 

  • Mangel M, Levin SA (2005) Regime, phase and paradigm shifts: making community ecology the basic science for fisheries. Philos T Roy Soc B 360:95–105

    Article  Google Scholar 

  • Mangel M, Brodziak J, DiNardo G (2010) Reproductive ecology and scientific inference of steepness: a fundamental metric of population dynamics and strategic fisheries management. Fish Fish 11:89–104

    Google Scholar 

  • Marasco RJ, Goodman D, Grimes CB, Lawson PW, Punt AE, Quinn TJ II (2007) Ecosystem-based fisheries management: some practical suggestions. Can J Fish Aquat Sci 64:928–939

    Article  Google Scholar 

  • Maunder MN, Punt AE (2004) Standardizing catch and effort data: a review of recent approaches. Fish Res 70:141–159

    Article  Google Scholar 

  • Mayo RK, Fogarty MJ, Serchuk FM (1992) Aggregate fish biomass and production on Georges Bank, 1960–1987. J Northw Atl Fish Sci 14:59–78

    Article  Google Scholar 

  • McAllister MK, Peterman RM (1992) Experimental design in the management of fisheries: a review. North Am J Fish Manag 12:1–18

    Article  Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405:228–233

    Article  PubMed  CAS  Google Scholar 

  • McCay BJ (1978) Systems ecology, people ecology, and the anthropology of fishing communities. Hum Ecol 6:397–422

    Article  Google Scholar 

  • McClanahan TR (2000) Recovery of a coral reef keystone predator, Balistapus undulatus, in East African marine parks. Biol Conserv 94:191–198

    Article  Google Scholar 

  • Melnychuk MC, Essington TE, Branch TA, Heppell S, Jensen OP, Link JS, Martell SJD, Parma AM, Pope JG, Smith ADM (2012) Do catch-share fisheries better track management targets? Fish Fish doi:10.1111/j.1467-2979.2011.00429.x

  • Micheli F (1999) Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285:1396–1398

    Article  PubMed  CAS  Google Scholar 

  • Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68

    Article  Google Scholar 

  • Minte-Vera CV, Branch TA, Stewart I, Dorn M (2005) Practical application of meta-analysis results: avoiding the double use of data. Can J Fish Aquat Sci 62:925–929

    Article  Google Scholar 

  • Minto C, Myers RA, Blanchard W (2008) Survival variability and population density in fish populations. Nature 452:344–348

    Article  PubMed  CAS  Google Scholar 

  • Mitsch WJ, Day JW Jr (2004) Thinking big with whole-ecosystem studies and ecosystem restoration—a legacy of H.T. Odum. Ecol Model 178:133–155

    Article  Google Scholar 

  • Möllmann C, Muller-Karulis B, Kornilovs G, St John MA (2008) Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback coops in a simple ecosystem. ICES J Mar Sci 65:302–310

    Article  Google Scholar 

  • Moloney DG, Pearse PH (1979) Quantitative rights as an instrument for regulating commercial fisheries. J Fish Res Board Can 36:859–866

    Article  Google Scholar 

  • Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM, Broad K, Sanchirico JN, Buch K, Box S, Stoffle RW, Gill AB (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101

    Article  PubMed  CAS  Google Scholar 

  • Murawski SA (1991) Can we manage our multispecies fisheries? Fisheries 16:5–13

    Article  Google Scholar 

  • Murawski SA, Methot R, Tromble G (2007) Biodiversity loss in the ocean: how bad is it? Science 316:1281

    Article  PubMed  CAS  Google Scholar 

  • Murawski SA, Steele JH, Taylor P, Fogarty MJ, Sissenwine MP, Ford M, Suchman C (2010) Why compare marine ecosystems? ICES J Mar Sci 67:1–9

    Article  Google Scholar 

  • Myers RA, Barrowman NJ (1996) Is fish recruitment related to spawner abundance? Fish Bull 94:707–724

    Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Article  PubMed  CAS  Google Scholar 

  • Myers RA, Barrowman NJ, Hutchings JA, Rosenberg AA (1995) Population dynamics of exploited fish stocks at low population levels. Science 269:1106–1108

    Article  PubMed  CAS  Google Scholar 

  • Myers RA, Mertz G, Fowlow PS (1997) Maximum population growth rates and recovery times for Atlantic cod, Gadus morhua. Fish Bull 95:762–772

    Google Scholar 

  • Myers RA, Bowen KG, Barrowman NJ (1999) Maximum reproductive rate of fish at low population sizes. Can J Fish Aquat Sci 56:2404–2419

    Google Scholar 

  • Myers RA, Barrowman NJ, Hilborn R, Kehler DG (2002) Inferring Bayesian priors with limited direct data: applications to risk analysis. North Am J Fish Manag 22:351–364

    Article  Google Scholar 

  • Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH (2007) Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315:1846–1850

    Article  PubMed  CAS  Google Scholar 

  • Nash RDM, Dickey-Collas M, Kell LT (2009) Stock and recruitment in North Sea herring (Clupea harengus); compensation and depensation in the population dynamics. Fish Res 95:88–97

    Article  Google Scholar 

  • NRC (2002) Effects of trawling and dredging on seafloor habitat/Committee on Ecosystem Effects of Fishing: phase 1—effects of bottom trawling on seafloor habitats. National Academy Press, Washington

    Google Scholar 

  • NRC (2003) Decline of the Steller sea lion in Alaskan waters: untangling food webs and fishing nets. National Academies Press, Washington

    Google Scholar 

  • O’Driscoll RL, Clark MR (2005) Quantifying the relative intensity of fishing on New Zealand seamounts. NZ J Mar Freshwat Res 39:839–850

    Article  Google Scholar 

  • Oguz T, Gilbert D (2007) Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960–2000: evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep-Sea Res Pt I 54:220–242

    Google Scholar 

  • Ostrom E, Burger J, Field CB, Norgaard RB, Policansky D (1999) Revisiting the commons: local lessons, global challenges. Science 284:278–282

    Article  PubMed  CAS  Google Scholar 

  • Overholtz WJ, Tyler AV (1986) An exploratory simulation model of competition and predation in a demersal fish assemblage on Georges Bank. Trans Am Fish Soc 115:805–817

    Article  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Article  Google Scholar 

  • Paine RT (1969) The Pisaster-Tegula interaction: prey patches, predator food preference, and intertidal community structure. Ecology 50:950–961

    Article  Google Scholar 

  • Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM, Hughes TP, Kappel CV, Micheli F, Ogden JC, Possingham HP, Sala E (2005) Are U.S. coral reefs on the slippery slope to slime? Science 307:1725–1726

    Article  PubMed  CAS  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres FJ (1998) Fishing down marine food webs. Science 279:860–863

    Article  PubMed  CAS  Google Scholar 

  • Peterson CH, Summerson HC (1992) Basin-scale coherence of population dynamics of an exploited marine invertebrate, the bay scallop: implications of recruitment limitation. Mar Ecol Prog Ser 90:257–272

    Article  Google Scholar 

  • Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-based fishery management. Science 305:346–347

    Article  PubMed  CAS  Google Scholar 

  • Pine WE III, Martell SJD, Walters CJ, Kitchell JF (2009) Counterintuitive responses of fish populations to management actions: some common causes and implications for predictions based on ecosystem modeling. Fisheries 34(4):165–180

    Article  Google Scholar 

  • Pinnegar JK, Polunin NVC, Francour P, Badalamenti F, Chemello R, Harmelin-Vivien M-L, Hereu B, Milazzo M, Zabalo M, D’Anna G, Pipitone C (2000) Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environ Conserv 27:179–200

    Article  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Article  Google Scholar 

  • Post JR, Parkinson EA, Johnston NT (1999) Density-dependent processes in structured fish populations: interaction strengths in whole-lake experiments. Ecol Monogr 69:155–175

    Article  Google Scholar 

  • Post JR, Sullivan M, Cox S, Lester NP, Walters CJ, Parkinson EA, Paul AJ, Jackson L, Shuter BJ (2002) Canada’s recreational fisheries: the invisible collapse? Fisheries 27(1):6–17

    Article  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WL, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620

    Article  Google Scholar 

  • Punt AE, Hilborn R (1997) Fisheries stock assessment and decision analysis: the Bayesian approach. Rev Fish Biol Fisheries 7:35–63

    Article  Google Scholar 

  • Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44

    Article  Google Scholar 

  • Purcell JE, Uye S, Lo WT (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174

    Article  Google Scholar 

  • Quinn TJ II, Deriso RB (1999) Quantitative fish dynamics. Oxford University Press, New York

    Google Scholar 

  • Radovich J (1976) Catch-per-unit-of-effort: fact, fiction, or dogma. Cal Coop Ocean Fish 18:31–33

    Google Scholar 

  • Radovich J (1982) The collapse of the California sardine fishery: what have we learned? Cal Coop Ocean Fish 23:56–78

    Google Scholar 

  • Ricard D, Minto C, Baum JK, Jensen OP (2012) Assessing the stock assessment knowledge base and status of marine fisheries with the new RAM Legacy database. Fish Fish doi:10.1111/j.1467-2979.2011.00435.x

  • Ricker WE (1954) Stock and recruitment. J Fish Res Board Can 11:559–623

    Article  Google Scholar 

  • Rindorf A, Wanless S, Harris MP (2000) Effects of changes in sandeel availability on the reproductive output of seabirds. Mar Ecol Prog Ser 202:241–252

    Article  Google Scholar 

  • Rose GA, Kulka DW (1999) Hyperaggregation of fish and fisheries: how catch-per-unit-effort increased as the northern cod (Gadus morhua) declined. Can J Fish Aquat Sci 56(Suppl):118–127

    Article  Google Scholar 

  • Rose GA, Leggett WC (1991) Effects of biomass-range interactions on catchability of migratory demersal fish by mobile fisheries: an example of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 48:843–848

    Article  Google Scholar 

  • Russ GR (1985) Effects of protective management on coral reef fishes in the central Philippines. In: Proceedings of the 6th international coral reef symposium, vol 4, pp 219–224

  • Ruzzante DE, Mariani S, Bekkevold D, Andre C, Mosegaard H, Clausen LAW, Dahlgren TG, Hutchinson WF, Hatfield EMC, Torstensen E, Brigham J, Simmonds EJ, Laikre L, Larsson LC, Stet RJM, Ryman N, Carvalho GR (2006) Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proc Biol Sci 69:1459–1464

    Article  Google Scholar 

  • Salomon AK, Shears NT, Langlois TJ, Babcock RC (2008) Cascading effects of fishing can alter carbon flow through a temperate coastal ecosystem. Ecol Appl 18:1874–1887

    Article  PubMed  Google Scholar 

  • Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One 3:e1548

    Article  PubMed  CAS  Google Scholar 

  • Schaaf WE (1980) An analysis of the dynamic population response of the Atlantic menhaden, Brevoortia tyrannus, to an intensive fishery. Rapp P-v Réun Cons Int Explor Mer 177:243–251

    Google Scholar 

  • Schaefer MB (1954) Some aspects of the dynamics of the population important to the management of the commercial marine fisheries. Bull I-ATTC 1:25–56

    Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  PubMed  CAS  Google Scholar 

  • Schindler DW (1998) Replication versus realism: the need for ecosystem-scale experiments. Ecosystems 1:323–334

    Article  Google Scholar 

  • Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, Webster MS (2010) Population diversity and the portfolio effect in an exploited species. Nature 465:609–613

    Article  PubMed  CAS  Google Scholar 

  • Schneider DC, Methven DA, Dalley EL (1997) Geographic contraction in juvenile fish: a test with northern cod (Gadus morhua) at low abundances. Can J Fish Aquat Sci 54(suppl 1):187–199

    Article  Google Scholar 

  • Schrank WE (2005) The Newfoundland fishery: ten years after the moratorium. Mar Pol 29:407–420

    Article  Google Scholar 

  • Schwartzlose RA, Alheit J, Bakun A, Baumgartner TR, Cloete R, Crawford RJM, Fletcher WJ, Green-Ruiz Y, Hagen E, Kawasaki T, Lluch-Belda D, Lluch-Cota SE, MacCall AD, Matsuura Y, Nevarez-Martinez MO, Parrish RH, Roy C, Serra R, Shust KV, Ward MN, Zuzunaga JZ (1999) Worldwide large-scale fluctuations of sardine and anchovy populations. S Afr J Mar Sci 21:289–347

    Article  Google Scholar 

  • Scott A (1955) The fishery: the objectives of sole ownership. J Polit Econ 63:116–124

    Article  Google Scholar 

  • Sethi SA, Branch TA, Watson R (2010) Fishery development patterns are driven by profit but not trophic level. Proc Natl Acad Sci 107:12163–12167

    Article  PubMed  CAS  Google Scholar 

  • Shackell NL, Frank KT, Brickman DW (2005) Range contraction may not always predict core areas: an example from marine fish. Ecol Appl 15:1440–1449

    Article  Google Scholar 

  • Shears NT, Babcock RC (2002) Marine reserves demonstrate top-down control of community structure on temperate reefs. Oecologia 132:131–142

    Article  Google Scholar 

  • Shears NT, Babcock RC, Salomon AK (2008) Context-dependent effects of fishing: variation in trophic cascades across environmental gradients. Ecol Appl 18:1860–1873

    Article  PubMed  Google Scholar 

  • Sherman K, Jones C, Sullivan L, Smith W, Berrien P, Ejsymont L (1981) Congruent shifts in sand eel abundance in western and eastern North Atlantic ecosystems. Nature 291:486–489

    Article  Google Scholar 

  • Sibert J, Hampton J, Kleiber P, Maunder M (2006) Biomass, size, and trophic status of top predators in the Pacific Ocean. Science 314:1773–1776

    Article  PubMed  CAS  Google Scholar 

  • Sibly R, Barker D, Denham M, Hone J, Pagel M (2005) On the regulation of populations of mammals, birds, fish, and insects. Science 309:607–610

    Article  PubMed  CAS  Google Scholar 

  • Simenstad CA, Estes JA, Kenyon KW (1978) Aleuts, sea otters, and alternate stable-state communities. Science 200:403–411

    Article  PubMed  CAS  Google Scholar 

  • Sutherland WJ, Adams WM, Aronson RB, Aveling R, Blackburn TM, Broad S, Ceballos G, Côté IM, Cowling RM, Da Fonseca GAB, Dinerstein E, Ferraro PJ, Fleishman E, Gascon C, Hunter M Jr, Hutton J, Kareiva P, Kuria A, MacDonald DW, MacKinnon K, Madgwick FJ, Mascia MB, McNeely J, Milner-Gulland EJ, Moon S, Morley CG, Nelson S, Osborn D, Pai M, Parsons ECM, Peck LS, Possingham H, Prior SV, Pullin AS, Rands MRW, Ranganathan J, Redford KH, Rodriguez JP, Seymour F, Sobel J, Sodhi NS, Stott A, Vance-Borland K, Watkinson AR (2009) One hundred questions of importance to the conservation of global biological diversity. Conserv Biol 23:557–567

    Article  Google Scholar 

  • Sweatman H (2008) No-take reserves protect coral reefs from predatory starfish. Curr Biol 18:R598–R599

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Lehman CL, Bristow CE (1998) Diversity–stability relationships: statistical inevitability or ecological consequence? Am Nat 151:277–282

    Article  PubMed  CAS  Google Scholar 

  • Trites AW, Donnelly CP (2003) The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mamm Rev 33:3–28

    Article  Google Scholar 

  • Utne-Palm AC, Salvanes AGV, Currie B, Kaartvedt S, Nilsson GE, Braithwaite VA, Stecyk JAW, Hundt M, van der Bank M, Flynn B, Sandvik GK, Klevjer TA, Sweetman AK, Brüchert V, Pittman K, Peard KR, Lunde IG, Strandabø RAU, Gibbons MJ (2010) Trophic structure and community stability in an overfished ecosystem. Science 329:333–336

    Article  PubMed  CAS  Google Scholar 

  • Walters CJ (1986) Adaptive management of renewable resources. Macmillan, New York

    Google Scholar 

  • Walters CJ (2007) Is adaptive management helping to solve fisheries problems? Ambio 36:304–307

    Article  PubMed  Google Scholar 

  • Walters C, Kitchell JF (2001) Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing. Can J Fish Aquat Sci 58:39–50

    Article  Google Scholar 

  • Walters CJ, Martell SJD (2004) Fisheries ecology and management. Princeton University Press, Princeton

    Google Scholar 

  • Walters CJ, Collie JS, Webb T (1988) Experimental design for estimating transient responses to management disturbances. Can J Fish Aquat Sci 45:530–538

    Article  Google Scholar 

  • Walters CJ, Christensen V, Martell SJ, Kitchell JF (2005) Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES J Mar Sci 62:558–568

    Article  Google Scholar 

  • Walters CJ, Hilborn R, Christensen V (2008) Surplus production dynamics in declining and recovering fish populations. Can J Fish Aquat Sci 65:2536–2551

    Article  Google Scholar 

  • Ward P, Myers RA (2005) Shifts in open-ocean fish communities coinciding with the commencement of commercial fishing. Ecology 86:835–847

    Article  Google Scholar 

  • Wilberg MJ, Miller TJ (2007) Comment on “Impacts of biodiversity loss on ocean ecosystem services”. Science 316:1285b

    Article  CAS  Google Scholar 

  • Winters GH, Wheeler JP (1985) Interaction between stock area, stock abundance, and catchability coefficient. Can J Fish Aquat Sci 42:989–998

    Article  Google Scholar 

  • Worm B, Myers RA (2003) Meta-analysis of cod–shrimp interactions reveals top-down control in oceanic food webs. Ecology 84:162–173

    Article  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  PubMed  CAS  Google Scholar 

  • Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D (2009) Rebuilding global fisheries. Science 325:578–585

    Article  PubMed  CAS  Google Scholar 

  • Zaitsev YI, Mamaev V (1997) Marine biological diversity in the Black Sea. UN Publications, New York

    Google Scholar 

  • Zhou S (2007) Discriminating alternative stock–recruitment models and evaluating uncertainty in model structure. Fish Res 86:268–279

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jim Kitchell, Tim Essington, and Daniel Schindler for helpful discussions and are grateful for funding from the David H. Smith Conservation Research Fellowship and the US National Science Foundation (awards 1041570 and 1041678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf P. Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, O.P., Branch, T.A. & Hilborn, R. Marine fisheries as ecological experiments. Theor Ecol 5, 3–22 (2012). https://doi.org/10.1007/s12080-011-0146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-011-0146-9

Keywords

Navigation