Skip to main content
Log in

Effects of network and dynamical model structure on species persistence in large model food webs

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Four models of network structure are combined with models of bioenergetic dynamics to study the role of food web topology and nonlinear dynamics on species coexistence in complex ecological networks. Network models range from the highly structured niche model to loosely constrained energetically feasible random networks. Bioenergetic models differ in how they represent primary production, functional responses, and consumption by generalists. Network structure weakly influenced the ability of species to coexist. Species persistence is strongly affected by functional responses and generalists’ consumption rates but weakly affected by models and amounts of primary production. Despite these generalities, specific mechanisms that determine persistence under one dynamical regime, such as top-down control by consumers, may play an insignificant role under different dynamical conditions. Future research is needed to strengthen the weak empirical basis for various functional forms and parameter values that strongly influence whether species can coexist in complex food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amaral LAN, Meyer M (1999) Environmental changes, coextinction and patterns in the fossil record. Phys Rev Lett 82:652–655

    Article  Google Scholar 

  • Arditi R, Michalski JJ (1996) Nonlinear food web models and their responses to increased basal productivity. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman and Hall, New York, pp 122–133

    Google Scholar 

  • Bascompte J, Melian CJ (2005) Simple trophic modules for complex food webs. Ecology 86:2868–2873

    Article  Google Scholar 

  • Beckerman AP, Petchey OL, Warren PH (2006) Foraging biology predicts food web complexity. Proc Natl Acad Sci USA 103:13745–13749

    Article  PubMed  CAS  Google Scholar 

  • Beddington JR (1975) Mutual Interference between parasites or predators and its effect on searching efficiency. J Anim Ecol 44:331–340

    Article  Google Scholar 

  • Borer ET, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) Topological approaches to food web analyses: a few modifications may improve our insights. Oikos 99:397–401

    Article  Google Scholar 

  • Brose U, Berlow EL, Martinez ND (2005) Scaling up keystone effects from simple to complex ecological networks. Ecol Lett 8:1317–1325

    Article  Google Scholar 

  • Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF, Blanchard JL, Brey T, Carpenter SR, Blandenier MFC, Cushing L, Dawah HA, Dell T, Edwards F, Harper-Smith S, Jacob U, Ledger ME, Martinez ND, Memmott J, Mintenbeck K, Pinnegar JK, Rall BC, Rayner TS, Reuman DC, Ruess L, Ulrich W, Williams RJ, Woodward G, Cohen JE (2006a) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417

    Article  PubMed  Google Scholar 

  • Brose U, Williams RJ, Martinez ND (2006b) Allometric scaling enhances stability in complex food webs. Ecol Lett 9:1228–1236

    Article  PubMed  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Caldarelli G, Higgs PG, McKane AJ (1998) Modelling coevolution in multispecies communities. J Theor Biol 193:345–358

    Article  PubMed  Google Scholar 

  • Camacho J, Sole RV (2000) Extinction and taxonomy in a trophic model of coevolution. Phys Rev E 62:1119

    Article  CAS  Google Scholar 

  • Camacho J, Guimera R, Amaral LAN (2002) Robust patterns in food web structure. Phys Rev Lett 88:228102

    Article  PubMed  CAS  Google Scholar 

  • Cattin M-F, Bersier L-F, Banasek-Richter C, Baltensperger R, Gabriel J-P (2004) Phylogenetic constraints and adaptation explain food-web structure. Nature 427:835–839

    Article  PubMed  CAS  Google Scholar 

  • Chesson J (1983) The estimation and analysis of preference and its relationship to foraging models. Ecology 64:1297–1304

    Article  Google Scholar 

  • Cohen JE, Briand F, Newman CM (1990) Community food webs: data and theory. Springer, Berlin

    Google Scholar 

  • Cohen JE, Beaver RA, Cousins SH, DeAngelis DL, Goldwasser L, Heong KL, Holt RD, Kohn AJ, Lawton JH, Martinez N, O’Malley R, Page LM, Patten BC, Pimm SL, Polis GA, Rejm nek M, Schoener TW, Schoely K, Sprules WG, Teal JM, Ulanowicz RE, Warren PH, Wilbur HM, Yodzis P (1993) Improving food webs. Ecology 74:252–258

    Article  Google Scholar 

  • DeAngelis DL, Goldstein RA, Oneill RV (1975) Model for trophic interaction. Ecology 56:881–892

    Article  Google Scholar 

  • Drossel B, Higgs PG, McKane AJ (2001) The influence of predator–prey population dynamics on the long-term evolution of food web structure. J Theor Biol 208:91–107

    Article  PubMed  CAS  Google Scholar 

  • Drossel B, McKane AJ, Quince C (2004) The impact of nonlinear functional responses on the long-term evolution of food web structure. J Theor Biol 229:539–548

    Article  PubMed  Google Scholar 

  • Dunne JA (2006) The network structure of food webs. In: Pascual M, Dunne JA (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, New York

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2004) Network structure and robustness of marine food webs. Mar Ecol Prog Ser 273:291–302

    Article  Google Scholar 

  • Elton CS (1958) Ecology of invasions by animals and plants. Chapman & Hall, London

    Google Scholar 

  • Emmerson M, Yearsley JM (2004) Weak interactions, omnivory and emergent food-web properties. Proc R Soc Lond B Biol Sci 271:397–405

    Article  Google Scholar 

  • Enquist BJ, West GB, Charnov EL, Brown JH (1999) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911

    Article  CAS  Google Scholar 

  • Erdos P, Renyi A (1959) On random graphs I. Publ Math (Debr) 6:290–297

    Google Scholar 

  • Ernest SKM, Enquist BJ, Brown JH, Charnov EL, Gillooly JF, Savage VM, White EP, Smith FA, Hadly EA, Haskell JP, Lyons SK, Maurer BA, Niklas KJ, Tiffney B (2003) Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol Lett 6:990–995

    Article  Google Scholar 

  • Fagan WF (1997) Omnivory as a stabilizing feature of natural communities. Am Nat 150:554–567

    Article  PubMed  CAS  Google Scholar 

  • Fussman GF, Blasius B (2005) Community response to enrichment is highly sensitive to model structure. Biol Lett 1:9–12

    Article  Google Scholar 

  • Garcia-Domingo JL, Saldana J (2007) Food-web complexity emerging from ecological dynamics on adaptive networks. J Theor Biol 247:819–826

    Article  PubMed  Google Scholar 

  • Gentleman W, Leising A, Frost B, Strom S, Musrray J (2003) Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-Sea Res II 50:2847–2875

    Article  CAS  Google Scholar 

  • Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91:293–320

    Article  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Jeschke JM, Kopp M, Tollrian R (2002) Predator functional responses: discriminating between handling and digesting prey. Ecol Monogr 72:95–112

    Google Scholar 

  • Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. Science 299:1388–1391

    Article  PubMed  CAS  Google Scholar 

  • Loeuille N, Loreau M (2005) Evolutionary emergence of size-structured food webs. Proc Natl Acad Sci USA 102:5761–5766

    Article  PubMed  CAS  Google Scholar 

  • Martinez ND, Williams RJ, Dunne JA (2006) Diversity, complexity, and persistence in large model ecosystems. In: Pascual M, Dunne JA (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, New York

    Google Scholar 

  • May RM (1972) Will a large complex system be stable? Nature 238:413–414

    Article  PubMed  CAS  Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405:228–233

    Article  PubMed  CAS  Google Scholar 

  • McCann K, Hastings A (1997) Re-evaluating the omnivory–stability relationship in food webs. Proc R Soc Lond B Biol Sci 264:1249–1254

    Article  Google Scholar 

  • McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798

    Article  CAS  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  PubMed  CAS  Google Scholar 

  • Montoya JM, Sole RV (2003) Topological properties of food webs: from real data to community assembly models. Oikos 102:614–622

    Article  Google Scholar 

  • Murdoch WW (1973) The functional response of predators. J Appl Ecol 10:335–342

    Google Scholar 

  • Nachman G (2006) A functional response model of a predator population foraging in a patchy environment. J Anim Ecol 75:948–958

    Article  PubMed  Google Scholar 

  • Neutel AM, Heesterbeek JAP, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    Article  PubMed  CAS  Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Article  Google Scholar 

  • Pimm SL, Lawton JH (1977) Number of trophic levels in ecological communities. Nature 268:329–331

    Article  Google Scholar 

  • Pimm SL, Lawton JH (1978) Feeding on more than one trophic level. Nature 275:542–544

    Article  Google Scholar 

  • Post DM (2002) The long and short of food-chain length. Trends Ecol Evol 17:269–277

    Article  Google Scholar 

  • Post DM, Conners ME, Goldberg DS (2000) Prey preference by a top predator and the stability of linked food chains. Ecology 81:8–14

    Article  Google Scholar 

  • Real LA (1977) The kinetics of functional response. Am Nat 111:289–300

    Article  Google Scholar 

  • Real LA (1978) Ecological determinants of functional response. Ecology 60:481–485

    Article  Google Scholar 

  • Rossberg AG, Matsuda H, Amemiya T, Itoh K (2006a) Food webs: experts consuming families of experts. J Theor Biol 241:552–563

    Article  PubMed  CAS  Google Scholar 

  • Rossberg AG, Matsuda H, Amemiya T, Itoh K (2006b) Some properties of the speciation model for food web structure – mechanisms for degree distribution. J Theor Biol 238:401–415

    Article  PubMed  CAS  Google Scholar 

  • Skalski GT, Gilliam JF (2001) Functional responses with predator interference: viable alternatives to the Holling Type II model. Ecology 82:3083–3092

    Google Scholar 

  • Stouffer DB, Camacho J, Guimera R, Ng CA, Amaral LAN (2005) Quantitative patterns in the structure of model and empirical food webs. Ecology 86:1301–1311

    Article  Google Scholar 

  • Stouffer DB, Camacho J, Jiang W, Amaral LAN (2007) Evidence for the existence of a robust pattern of prey selection in food webs. Proc R Soc Lond B Biol Sci 274:1931–1940

    Article  Google Scholar 

  • Thompson RM, Hemberg M, Starzomski BM, Shurin JB (2007) Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88:612–617

    Article  PubMed  Google Scholar 

  • Uchida S, Drossel B (2007) Relation between complexity and stability in food webs with adaptive behavior. J Theor Biol 247:713–722

    Article  PubMed  Google Scholar 

  • Vandermeer J (2006) Omnivory and the stability of food webs. J Theor Biol 238:497–504

    Article  PubMed  Google Scholar 

  • Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Martinez ND (2004a) Limits to trophic levels and omnivory in complex food webs: theory and data. Am Nat 163:458–468

    Article  PubMed  Google Scholar 

  • Williams RJ, Martinez ND (2004b) Stabilization of chaotic and non-permanent food-web dynamics. Eur Phys J B 38:297–303

    Article  CAS  Google Scholar 

  • Williams RJ, Berlow EL, Dunne JA, Barabasi AL, Martinez ND (2002) Two degrees of separation in complex food webs. Proc Natl Acad Sci USA 99:12913–12916

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Brose U, Martinez ND (2007) Homage to Yodzis and Innes 1992: scaling up feeding-based population dynamics to complex ecological networks. In: Rooney N, McCann KS, Noakes DIG (eds) From energetics to ecosystems: the dynamics and structure of ecological systems. Springer, New York

    Google Scholar 

  • Yodzis P (1981) The stability of real ecosystems. Nature 289:674–676

    Article  Google Scholar 

  • Yodzis P, Innes S (1992) Body size and consumer–resource dynamics. Am Nat 139:1151–1175

    Article  Google Scholar 

  • Yoshida K (2003) Dynamics of evolutionary patterns of clades in a food web system model. Ecol Res 18:625–637

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Neo Martinez for many useful discussions and comments on an early version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Williams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Appendix A (DOC 78.5 KB)

Supplementary Fig. A1 (PPT 1.13 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, R.J. Effects of network and dynamical model structure on species persistence in large model food webs. Theor Ecol 1, 141–151 (2008). https://doi.org/10.1007/s12080-008-0013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-008-0013-5

Keywords

Navigation