Skip to main content
Log in

miR-217-5p induces apoptosis by directly targeting PRKCI, BAG3, ITGAV and MAPK1 in colorectal cancer cells

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Apoptosis is a genetically directed process of programmed cell death. A variety of microRNAs (miRNAs), endogenous single-stranded non-coding RNAs of about 22 nucleotides in length have been shown to be involved in the regulation of the intrinsic or extrinsic apoptotic pathways. There is increasing evidence that the aberrant expression of miRNAs plays a causal role in the development of diseases such as cancer. This makes miRNAs promising candidate molecules as therapeutic targets or agents. MicroRNA (miR)-217-5p has been implicated in carcinogenesis of various cancer entities, including colorectal cancer. Here, we analyzed the pro-apoptotic potential of miR-217-5p in a variety of colorecatal cancer cell lines showing that miR-217-5p mimic transfection led to the induction of apoptosis causing the breakdown of mitochondrial membrane potential, externalization of phosphatidylserine, activation of caspases and fragmentation of DNA. Furthermore, elevated miR-217-5p levels downregulated mRNA and protein expression of atypical protein kinase c iota type I (PRKCI), BAG family molecular chaperone regulator 3 (BAG3), integrin subunit alpha v (ITGAV) and mitogen-activated protein kinase 1 (MAPK1). A direct miR-217-5p mediated regulation to those targets was shown by repressed luciferase activity of reporter constructs containing the miR-217-5p binding sites in the 3′ untranslated region. Taken together, our observations have uncovered the apoptosis-inducing potential of miR-217-5p through its regulation of multiple target genes involved in the ERK-MAPK signaling pathway by regulation of PRKCI, BAG3, ITGAV and MAPK1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AEG-1:

Astrocyte-elevated gene-1

AP-1:

Activating protein-1

BAG3:

BAG family molecular chaperone regulator 3

BIRC3:

Baculoviral IAP repeat containing 2

BRCA1:

BRCA1 DNA repair associated

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazine

CRC:

Colorectal cancer

CTNNB1:

Catenin beta 1

DMSO:

Dimethyl sulfoxide

DT:

Death inducing

EGFR:

Epidermal growth factor receptor

ElK1:

Ets like protein 1

ERK:

Extracellular-signal regulated kinase

FCS:

Fetal calf serum

FITC:

Fluorescein isothiocyanate

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HRP:

Horseradish peroxidase

ITGAV:

Integrin subunit alpha v

MAP K1:

Mitogen-activated protein kinase 1

miR:

MicroRNA

MMP:

Mitochondrial membrane potential

MYC:

Transcriptional activator MYC

NF-kB:

Nuclear factor-kappa B

NT:

Non-targeting

PARP:

Poly (ADP-ribose) polymerase

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

PIK3CA:

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

PPIA:

Peptidylprolyl isomerase A

PRKCI:

Protein kinase c iota type I

PS:

Phosphatidylserine

RAC1:

Ras-related C3 botulinum toxin substrate 1

RAF1:

Raf-1 proto-oncogene, serine/threonine kinase

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

siRNA:

Small interfering RNA

SOX2:

Sex determining region Y-box 2

TGFBR2:

Transforming growth factor beta receptor 2

TMRE:

Tetramethylrhodamine ethyl ester perchlorate

TRAIL:

Tumor necrosis factor related apoptosis inducing ligand

UTR:

Untranslated region

References

  • Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4. https://doi.org/10.7554/eLife.05005

  • Akiyama T, Dass CR, Choong PF (2009) Bim-targeted cancer therapy: a link between drug action and underlying molecular changes. Mol Cancer Ther 8:3173–3180

    Article  CAS  PubMed  Google Scholar 

  • Ammirante M, Rosati A, Arra C, Basile A, Falco A, Festa M, Pascale M, d'Avenia M, Marzullo L, Belisario MA et al (2010) IKK{gamma} protein is a target of BAG3 regulatory activity in human tumor growth. Proc Natl Acad Sci U S A 107:7497–7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader AG (2012) miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet, 3:120

  • Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90

    Article  PubMed  PubMed Central  Google Scholar 

  • Boiani M, Daniel C, Liu X, Hogarty MD, Marnett LJ (2013) The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737. J Biol Chem 288:6980–6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breving K, Esquela-Kerscher A (2010) The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 42:1316–1329

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA (2016) MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 7:6476–6505

    Article  PubMed  Google Scholar 

  • Chaudhuri AD, Yelamanchili SV, Marcondes MC, Fox HS (2013) Up-regulation of microRNA-142 in simian immunodeficiency virus encephalitis leads to repression of sirtuin1. FASEB J 27:3720–3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen DL, Zhang DS, Lu YX, Chen LZ, Zeng ZL, He MM, Wang FH, Li YH, Zhang HZ, Pelicano H et al (2015) microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget 6:10868–10879

    PubMed  PubMed Central  Google Scholar 

  • Chiappetta G, Ammirante M, Basile A, Rosati A, Festa M, Monaco M, Vuttariello E, Pasquinelli R, Arra C, Zerilli M et al (2007) The antiapoptotic protein BAG3 is expressed in thyroid carcinomas and modulates apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand. J Clin Endocrinol Metab 92:1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247

    Article  CAS  PubMed  Google Scholar 

  • Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23:2785–2796

    Article  CAS  PubMed  Google Scholar 

  • Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N (2010) Colorectal cancer. Lancet 375:1030–1047

    Article  PubMed  Google Scholar 

  • Debarros M, Steele SR (2013) Colorectal cancer screening in an equal access healthcare system. J Cancer 4:270–280

    Article  PubMed  PubMed Central  Google Scholar 

  • Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform 44:839–847

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Festa M, Del Valle L, Khalili K, Franco R, Scognamiglio G, Graziano V, De Laurenzi V, Turco MC, Rosati A (2011) BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy. Am J Pathol 178:2504–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer S, Buck T, Wagner A, Ehrhart C, Giancaterino J, Mang S, Schad M, Mathias S, Aschrafi A, Handrick R, Otte K (2014) A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells. Biotechnol J 9:1279–1292

    Article  CAS  PubMed  Google Scholar 

  • Fischer S, Handrick R, Aschrafi A, Otte K (2015) Unveiling the principle of microRNA-mediated redundancy in cellular pathway regulation. RNA Biol 12:238–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu S, Fan L, Pan X, Sun Y, Zhao H (2015) Integrin alphav promotes proliferation by activating ERK 1/2 in the human lung cancer cell line A549. Mol Med Rep 11:1266–1271

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb RA, Granville DJ (2002) Analyzing mitochondrial changes during apoptosis. Methods 26:341–347

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  CAS  PubMed  Google Scholar 

  • Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, Weinreb PH, Fleuren GJ (2007) Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol 212:316–324

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro H, Akimoto K, Nagashima Y, Kojima Y, Sasaki T, Ishiguro-Imagawa Y, Nakaigawa N, Ohno S, Kubota Y, Uemura H (2009) aPKClambda/iota promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci U S A 106:16369–16374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs AT, Marnett LJ (2009) HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J Biol Chem 284:9176–9183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187

    Article  CAS  PubMed  Google Scholar 

  • Justilien V, Walsh MP, Ali SA, Thompson EA, Murray NR, Fields AP (2014) The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate hedgehog signaling in lung squamous cell carcinoma. Cancer Cell 25:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  • Kleemann M, Bereuther J, Fischer S, Marquart K, Hänle S, Unger K, Jendrossek V, Riedel CU, Handrick R, Otte K (2017) Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miR-147b as a potential biomarker in ovarian cancer prognosis. Oncotarget 8(12):18773–18791. https://doi.org/10.18632/oncotarget.13095

  • Klein EA, Assoian RK (2008) Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 121:3853–3857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11:644–656

    Article  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Landen CN, Kim TJ, Lin YG, Merritt WM, Kamat AA, Han LY, Spannuth WA, Nick AM, Jennnings NB, Kinch MS et al (2008) Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia 10:1259–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Cheong HJ, Kim SJ, Yoon J, Kim HJ, Kim KH, Kim SH, Kim HJ, Bae SB, Kim CK et al (2011) Low-dose combinations of LBH589 and TRAIL can overcome TRAIL-resistance in colon cancer cell lines. Anticancer Res 31:3385–3394

    CAS  PubMed  Google Scholar 

  • Li J, Li D, Zhang W (2016) Tumor suppressor role of miR-217 in human epithelial ovarian cancer by targeting IGF1R. Oncol Rep 35:1671–1679

    Article  CAS  PubMed  Google Scholar 

  • Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH (2011) MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 47:163–174

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Lang N, Chen X, Tang Q, Liu S, Huang J, Zheng Y, Bi F (2011) miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett 301:151–160

    Article  CAS  PubMed  Google Scholar 

  • Lu JG, Sun YN, Wang C, Jin DJ, Liu M (2009) Role of the alpha v-integrin subunit in cell proliferation, apoptosis and tumor metastasis of laryngeal and hypopharyngeal squamous cell carcinomas: a clinical and in vitro investigation. Eur Arch Otorhinolaryngol 266:89–96

    Article  PubMed  Google Scholar 

  • Lynam-Lennon N, Maher SG, Reynolds JV (2009) The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc 84:55–71

    Article  PubMed  Google Scholar 

  • MacFarlane M (2003) TRAIL-induced signalling and apoptosis. Toxicol Lett 139:89–97

    Article  CAS  PubMed  Google Scholar 

  • Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  CAS  PubMed  Google Scholar 

  • Montecucco A, Zanetta F, Biamonti G (2015) Molecular mechanisms of etoposide. EXCLI J 14:95–108

    PubMed  PubMed Central  Google Scholar 

  • Moss JA (2014) Gene therapy review. Radiol Technol 86:155–180 quiz 181-154

    PubMed  Google Scholar 

  • Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 50:98–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qaseem A, Denberg TD, Hopkins RH Jr, Humphrey LL, Levine J, Sweet DE, Shekelle P, Clinical Guidelines Committee of the American College of P (2012) Screening for colorectal cancer: a guidance statement from the American College of Physicians. Ann Intern Med 156:378–386

    Article  PubMed  Google Scholar 

  • Ragnhammar P, Hafstrom L, Nygren P, Glimelius B, Care SB-gSCoTAiH (2001) A systematic overview of chemotherapy effects in colorectal cancer. Acta Oncol 40:282–308

    Article  CAS  PubMed  Google Scholar 

  • Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D (1997) GeneCards: integrating information about genes, proteins and diseases. Trends Genet 13:163

    Article  CAS  PubMed  Google Scholar 

  • Regala RP, Weems C, Jamieson L, Khoor A, Edell ES, Lohse CM, Fields AP (2005) Atypical protein kinase C iota is an oncogene in human non-small cell lung cancer. Cancer Res 65:8905–8911

    Article  CAS  PubMed  Google Scholar 

  • Rosati A, Bersani S, Tavano F, Dalla Pozza E, De Marco M, Palmieri M, De Laurenzi V, Franco R, Scognamiglio G, Palaia R et al (2012) Expression of the antiapoptotic protein BAG3 is a feature of pancreatic adenocarcinoma and its overexpression is associated with poorer survival. Am J Pathol 181:1524–1529

    Article  CAS  PubMed  Google Scholar 

  • Scotti ML, Bamlet WR, Smyrk TC, Fields AP, Murray NR (2010) Protein kinase Ciota is required for pancreatic cancer cell transformed growth and tumorigenesis. Cancer Res 70:2064–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Wang P, Yang J, Li X (2014) MicroRNA-217 regulates WASF3 expression and suppresses tumor growth and metastasis in osteosarcoma. PLoS One 9:e109138

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Xu H, Li Z, Zhen Y, Wang B, Huo S, Xiao R, Xu Z (2016) BAG3 regulates cell proliferation, migration, and invasion in human colorectal cancer. Tumour Biol 37:5591–5597

    Article  CAS  PubMed  Google Scholar 

  • Slaby O, Svoboda M, Michalek J, Vyzula R (2009) MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 8:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Song KB, Liu WJ, Jia SS (2014) miR-219 inhibits the growth and metastasis of TSCC cells by targeting PRKCI. Int J Clin Exp Med 7:2957–2965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser A, O'Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245

    Article  CAS  PubMed  Google Scholar 

  • Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115:3729–3738

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Iwasaki M, Sugio A, Hishiya A, Tanaka R, Endo T, Takayama S, Saito T (2011) BAG3 (BCL2-associated athanogene 3) interacts with MMP-2 to positively regulate invasion by ovarian carcinoma cells. Cancer Lett 303:65–71

    Article  CAS  PubMed  Google Scholar 

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas LW, Lam C, Edwards SW (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett 584:2981–2989

    Article  CAS  PubMed  Google Scholar 

  • Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  Google Scholar 

  • Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D et al (2015) DIANA-TarBase v7.0: Indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43:D153–D159

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  • Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Shen ZL, Jiang KW, Zhao G, Wang CY, Yan YC, Yang Y, Zhang JZ, Shen C, Gao ZD et al (2015a) MicroRNA-217 functions as a prognosis predictor and inhibits colorectal cancer cell proliferation and invasion via an AEG-1 dependent mechanism. BMC Cancer 15:437

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Dong X, Gu X, Qin R, Jia H, Gao J (2015b) The MicroRNA-217 functions as a potential tumor suppressor in gastric cancer by targeting GPC5. PLoS One 10:e0125474

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43:D146–D152

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Cheng S, Tong R, Lv Z, Ding C, Du C, Xie H, Zhou L, Wu J, Zheng S (2014) BAG3 Regulates epithelial-mesenchymal transition and angiogenesis in human hepatocellular carcinoma. Lab Investig 94:252–261

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Tian Z, Gou WF, Takahashi H, Yu M, Xing YN, Takano Y, Zheng HC (2013) Bag-3 expression is involved in pathogenesis and progression of colorectal carcinomas. Histol Histopathol 28:1147–1156

    CAS  PubMed  Google Scholar 

  • Yang QS, Jiang LP, He CY, Tong YN, Liu YY (2017) Up-regulation of MicroRNA-133a inhibits the MEK/ERK signaling pathway to promote cell apoptosis and enhance radio-sensitivity by targeting EGFR in esophageal cancer in vivo and in vitro. J Cell Biochem 118(9):2625–2634. https://doi.org/10.1002/jcb.25829

  • Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Anastasiadis PZ, Liu Y, Thompson EA, Fields AP (2004) Protein kinase C (PKC) betaII induces cell invasion through a Ras/Mek-, PKC iota/Rac 1-dependent signaling pathway. J Biol Chem 279:22118–22123

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang JH, Lu Q, Wang YJ (2012) Bag3 promotes resistance to apoptosis through Bcl-2 family members in non-small cell lung cancer. Oncol Rep 27:109–113

    PubMed  Google Scholar 

  • Zhang W, Liu K, Liu S, Ji B, Wang Y, Liu Y (2015) MicroRNA-133a functions as a tumor suppressor by targeting IGF-1R in hepatocellular carcinoma. Tumour Biol 36:9779–9788

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Lu C, Chen L (2016) miR-217 regulates tumor growth and apoptosis by targeting the MAPK signaling pathway in colorectal cancer. Oncol Lett 12:4589–4597

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao WG, Yu SN, Lu ZH, Ma YH, Gu YM, Chen J (2010) The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31:1726–1733

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhao H, Feng L, Xu S (2016) MicroRNA-217 inhibits cell proliferation and invasion by targeting Runx2 in human glioma. Am J Transl Res 8:1482–1491

    PubMed  PubMed Central  Google Scholar 

  • Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92:57–70

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HCT 116 cells were kindly provided by Prof. Dr. Verena Jendrossek, IFZ, University of Duisburg-Essen and HT-29 and SW480 were kindly provided by Prof. Dr. Uwe Knippschild, University Hospital Ulm.

Funding

This study was funded by the Postgraduate Scholarships Act of the Ministry for Science, Research and Arts of the federal state government of Baden-Wuerttemberg, Germany. Further acknowledgements address the International Graduate School in Molecular Medicine of Ulm University, Germany, for scientific encouragement and support to Michael Kleemann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kleemann.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flum, M., Kleemann, M., Schneider, H. et al. miR-217-5p induces apoptosis by directly targeting PRKCI, BAG3, ITGAV and MAPK1 in colorectal cancer cells. J. Cell Commun. Signal. 12, 451–466 (2018). https://doi.org/10.1007/s12079-017-0410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-017-0410-x

Keywords

Navigation