Skip to main content
Log in

Cysteine-rich protein 61 (CCN1) and connective tissue growth factor (CCN2) at the crosshairs of ocular neovascular and fibrovascular disease therapy

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The vasculature forms a highly branched network investing every organ of vertebrate organisms. The retinal circulation, in particular, is supported by a central retinal artery branching into superficial arteries, which dive into the retina to form a dense network of capillaries in the deeper retinal layers. The function of the retina is highly dependent on the integrity and proper functioning of its vascular network and numerous ocular diseases including diabetic retinopathy, age-related macular degeneration and retinopathy of prematurity are caused by vascular abnormalities culminating in total and sometimes irreversible loss of vision. CCN1 and CCN2 are inducible extracellular matrix (ECM) proteins which play a major role in normal and aberrant formation of blood vessels as their expression is associated with developmental and pathological angiogenesis. Both CCN1 and CCN2 achieve disparate cell-type and context-dependent activities through modulation of the angiogenic and synthetic phenotype of vascular and mesenchymal cells respectively. At the molecular level, CCN1 and CCN2 may control capillary growth and vascular cell differentiation by altering the composition or function of the constitutive ECM proteins, potentiating or interfering with the activity of various ligands and/or their receptors, physically interfering with the ECM-cell surface interconnections, and/or reprogramming gene expression driving cells toward new phenotypes. As such, these proteins emerged as important prognostic markers and potential therapeutic targets in neovascular and fibrovascular diseases of the eye. The purpose of this review is to highlight our current knowledge and understanding of the most recent data linking CCN1 and CCN2 signaling to ocular neovascularization bolstering the potential value of targeting these proteins in a therapeutic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AGE:

Advanced glycation end-product

AMD:

Age-related macular degeneration

Ang:

Angiopoietin

CNV:

Choroidal neovascularization

ECM:

Extracellular matrix

GCL:

Ganglion cell layer

GFP:

Green fluorescent protein

IGF:

Insulin-like growth factor

IPL:

Inner plexiform layer

INL:

Inner nuclear layer

MMP:

Matrix metalloproteinase

OIR:

Oxygen-induced retinopathy

PDR:

Proliferative diabetic retinopathy

RPE:

Retinal pigment epithelium

ROP:

Retinopathy of Prematurity

ROS:

Reactive oxygen species

TGF:

Transforming growth factor

TNF:

Tumor necrosis growth factor

VEGF:

Vascular endothelial growth factor

References

  • El Abd KT, Kubota S, Janune D, Nishida T, Hattori T, Aoyama E, Perbal B, Kuboki T, Takigawa M (2013) Anti-fibrotic effect of CCN3 accompanied by altered gene expression profile of the CCN family. J Cell Commun Signal 7:11–18

    Article  Google Scholar 

  • Aiello LP, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL III, Klein R (1998) Diabetic retinopathy. Diabetes Care 21:143–156

    CAS  PubMed  Google Scholar 

  • Armstrong LC, Bornstein P (2003) Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 22:63–71

    Article  CAS  PubMed  Google Scholar 

  • Arnott JA, Lambi AG, Mundy C, Hendesi H, Pixley RA, Owen TA, Safadi FF, Popoff SN (2011) The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit Rev Eukaryot Gene Expr 21:43–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Babic AM, Chen CC, Lau LF (1999) Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 19:2958–2966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95:507–519

    Article  CAS  PubMed  Google Scholar 

  • Barzegar-Befroei N, Peto T, Bergen AA, Lengyel I (2012) Understanding the role of Bruch’s membrane in CNV. Retinal Physician 9:20–25

    Google Scholar 

  • Bornstein P, Sage EH (2002) Matricellular proteins: Extracellular modulators of cell function. Curr Opin Cell Biol 14:608–616

    Article  CAS  PubMed  Google Scholar 

  • Bou-Gharios G, Ponticos M, Rajkumar V, Abraham D (2004) Extra-cellular matrix in vascular networks. Cell Prolif 37:207–220

    Article  CAS  PubMed  Google Scholar 

  • Brigstock DR (2003) The CCN family: A new stimulus package. J Endocrinol 178:169–175

    Article  CAS  PubMed  Google Scholar 

  • Bryant DM, Stow JL (2005) Nuclear translocation of cell-surface receptors: Lessons from fibroblast growth factor. Traffic 6:947–954

    Article  CAS  PubMed  Google Scholar 

  • Caballero S, Yang R, Grant MB, Chaqour B (2011) Selective blockade of cytoskeletal actin remodeling reduces experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 52:2490–2496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campochiaro PA (2000) Retinal and choroidal neovascularization. J Cell Physiol 184:301–310

    Article  CAS  PubMed  Google Scholar 

  • Caprara C, Grimm C (2012) From oxygen to erythropoietin: Relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 31:89–119

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen N, Leu SJ, Todorovic V, Lam SC, Lau LF (2004) Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem 279:44166–44176

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Du XY (2007) Functional properties and intracellular signaling of CCN1/Cyr61. J Cell Biochem 100:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Chintala H, Liu H, Parmar R, Kamalska M, Kim YJ, Lovett D, Grant MB, Chaqour B (2012) Connective tissue growth factor regulates retinal neovascularization through p53 protein-dependent transactivation of the matrix metalloproteinase (MMP)-2 gene. J Biol Chem 287:40570–40585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chudgar SM, Deng P, Maddala R, Epstein DL, Rao PV (2006) Regulation of connective tissue growth factor expression in the aqueous humor outflow pathway. Mol Vis 12:1117–1126

    CAS  PubMed  Google Scholar 

  • Dams I, Wasyluk J, Prost M, Kutner A (2013) Therapeutic uses of prostaglandin F(2alpha) analogues in ocular disease and novel synthetic strategies. Prostaglandins Other Lipid Mediat.

  • Das A, McGuire PG (2003) Retinal and choroidal angiogenesis: Pathophysiology and strategies for inhibition. Prog Retin Eye Res 22:721–748

    Article  CAS  PubMed  Google Scholar 

  • De S, Razorenova O, McCabe NP, O’Toole T, Qin J, Byzova TV (2005) VEGF-integrin interplay controls tumor growth and vascularization. Proc Natl Acad Sci U S A 102:7589–7594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doherty HE, Kim HS, Hiller S, Sulik KK, Maeda N (2010) A mouse strain where basal connective tissue growth factor gene expression can be switched from low to high. PLoS One 5:e12909

    Article  PubMed Central  PubMed  Google Scholar 

  • Dulmovits BM, Herman IM (2012) Microvascular remodeling and wound healing: A role for pericytes. Int J Biochem Cell Biol 44:1800–1812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Francischetti IM, Kotsyfakis M, Andersen JF, Lukszo J (2010) Cyr61/CCN1 Displays high-affinity binding to the somatomedin B(1–44) domain of vitronectin. PLoS One 5:e9356

    Article  PubMed Central  PubMed  Google Scholar 

  • Fuchshofer R, Stephan DA, Russell P, Tamm ER (2009) Gene expression profiling of TGFbeta2- and/or BMP7-treated trabecular meshwork cells: Identification of Smad7 as a critical inhibitor of TGF-beta2 signaling. Exp Eye Res 88:1020–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao R, Brigstock DR (2003) Low density lipoprotein receptor-related protein (LRP) is a heparin-dependent adhesion receptor for connective tissue growth factor (CTGF) in rat activated hepatic stellate cells. Hepatol Res 27:214–220

    Article  CAS  PubMed  Google Scholar 

  • Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, Aiello LP, Kern TS, King GL (2009) Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15:1298–1306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall-Glenn F, De Young RA, Huang BL, van Handel B, Hofmann JJ, Chen TT, Choi A, Ong JR, Benya PD, Mikkola H, Iruela-Arispe ML, Lyons KM (2012) CCN2/Connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One 7:e30562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han JS, Macarak E, Rosenbloom J, Chung KC, Chaqour B (2003) Regulation of Cyr61/CCN1 gene expression through RhoA GTPase and p38MAPK signaling pathways. Eur J Biochem 270:3408–3421

    Article  CAS  PubMed  Google Scholar 

  • Hanna M, Liu H, Amir J, Sun Y, Morris SW, Siddiqui MA, Lau LF, Chaqour B (2009) Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 284:23125–23136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartnett ME, Penn JS (2012) Mechanisms and management of retinopathy of prematurity. N Engl J Med 367:2515–2526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasan A, Pokeza N, Shaw L, Lee HS, Lazzaro D, Chintala H, Rosenbaum D, Grant MB, Chaqour B (2011) The matricellular protein cysteine-rich protein 61 (CCN1/Cyr61) enhances physiological adaptation of retinal vessels and reduces pathological neovascularization associated with ischemic retinopathy. J Biol Chem 286:9542–9554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He S, Jin ML, Worpel V, Hinton DR (2003) A role for connective tissue growth factor in the pathogenesis of choroidal neovascularization. Arch Ophthalmol 121:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Heath E, Tahri D, Andermarcher E, Schofield P, Fleming S, Boulter CA (2008) Abnormal skeletal and cardiac development, cardiomyopathy, muscle atrophy and cataracts in mice with a targeted disruption of the Nov (Ccn3) gene. BMC Dev Biol 8:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Heavner W, Pevny L (2012) Eye development and retinogenesis. Cold Spring Harb Perspect Biol 4

  • Hendrickx M, Leyns L (2008) Non-conventional frizzled ligands and Wnt receptors. Dev Growth Differ 50:229–243

    Article  CAS  PubMed  Google Scholar 

  • Hilfiker-Kleiner D, Kaminski K, Kaminska A, Fuchs M, Klein G, Podewski E, Grote K, Kiian I, Wollert KC, Hilfiker A, Drexler H (2004) Regulation of proangiogenic factor CCN1 in cardiac muscle: Impact of ischemia, pressure overload, and neurohumoral activation. Circulation 109:2227–2233

    Article  CAS  PubMed  Google Scholar 

  • Hinton DR, Spee C, He S, Weitz S, Usinger W, LaBree L, Oliver N, Lim JI (2004) Accumulation of NH2-terminal fragment of connective tissue growth factor in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care 27:758–764

    Article  CAS  PubMed  Google Scholar 

  • Hirschfeld M, zur Hausen A, Bettendorf H, Jager M, Stickeler E (2009) Alternative splicing of Cyr61 is regulated by hypoxia and significantly changed in breast cancer. Cancer Res 69:2082–2090

    Article  CAS  PubMed  Google Scholar 

  • Holbourn KP, Perbal B, Ravi AK (2009) Proteins on the catwalk: Modelling the structural domains of the CCN family of proteins. J Cell Commun Signal 3:25–41

    Article  PubMed Central  PubMed  Google Scholar 

  • Hughes JM, Kuiper EJ, Klaassen I, Canning P, Stitt AW, Van BJ, Schalkwijk CG, Van Noorden CJ, Schlingemann RO (2007) Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia 50:1089–1098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K, Ikeda E, Takata S, Kobayashi K, Okada Y (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16:219–221

    CAS  PubMed  Google Scholar 

  • Ishida S, Yamashiro K, Usui T, Kaji Y, Ogura Y, Hida T, Honda Y, Oguchi Y, Adamis AP (2003) Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nat Med 9:781–788

    Article  CAS  PubMed  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jans DA (1994) Nuclear signaling pathways for polypeptide ligands and their membrane receptors? FASEB J 8:841–847

    CAS  PubMed  Google Scholar 

  • Jin Y, Kim HP, Ifedigbo E, Lau LF, Choi AM (2005) Cyr61 Protects against hyperoxia-induced cell death via Akt pathway in pulmonary epithelial cells. Am J Respir Cell Mol Biol 33:297–302

    Article  CAS  PubMed  Google Scholar 

  • Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juric V, Chen CC, Lau LF (2012) TNFalpha-induced apoptosis enabled by CCN1/CYR61: Pathways of reactive oxygen species generation and cytochrome c release. PLoS One 7:e31303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kennedy L, Liu S, Shi-Wen X, Chen Y, Eastwood M, Sabetkar M, Carter DE, Lyons KM, Black CM, Abraham DJ, Leask A (2007) CCN2 Is necessary for the function of mouse embryonic fibroblasts. Exp Cell Res 313:952–964

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Chen CC, Monzon RI, Lau LF (2013). The Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol.

  • Kita T, Hata Y, Kano K, Miura M, Nakao S, Noda Y, Shimokawa H, Ishibashi T (2007) Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: Possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes 56:231–238

    Article  CAS  PubMed  Google Scholar 

  • Kuiper EJ, Van Nieuwenhoven FA, de Smet MD, van Meurs JC, Tanck MW, Oliver N, Klaassen I, Van Noorden CJ, Goldschmeding R, Schlingemann RO (2008a) The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. PLoS One 3:e2675

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuiper EJ, van Zijderveld R, Roestenberg P, Lyons KM, Goldschmeding R, Klaassen I, Van Noorden CJ, Schlingemann RO (2008b) Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice. J Histochem Cytochem 56:785–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon YH, Fingert JH, Kuehn MH, Alward WL (2009) Primary open-angle glaucoma. N Engl J Med 360:1113–1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2006) All in the CCN family: Essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Chung JW, Youn SW, Kim JY, Park KW, Koo BK, Oh BH, Park YB, Chaqour B, Walsh K, Kim HS (2007) Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 100:372–380

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Fu ZJ, Lo AC (2012) Hypoxia-induced oxidative stress in ischemic retinopathy. Oxid Med Cell Longev 2012:426769

    PubMed Central  PubMed  Google Scholar 

  • Liang Y, Li C, Guzman VM, Evinger AJ III, Protzman CE, Krauss AH, Woodward DF (2003) Comparison of prostaglandin F2alpha, bimatoprost (prostamide), and butaprost (EP2 agonist) on Cyr61 and connective tissue growth factor gene expression. J Biol Chem 278:27267–27277

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yang R, Tinner B, Choudhry A, Schutze N, Chaqour B (2008) Cysteine-rich protein 61 and connective tissue growth factor induce deadhesion and anoikis of retinal pericytes. Endocrinology 149:1666–1677

    Article  CAS  PubMed  Google Scholar 

  • Lutty GA, Hasegawa T, Baba T, Grebe R, Bhutto I, McLeod DS (2010) Development of the human choriocapillaris. Eye (Lond) 24:408–415

    Article  CAS  Google Scholar 

  • Martinez-Castellanos MA, Schwartz S, Hernandez-Rojas ML, Kon-Jara VA, Garcia-Aguirre G, Guerrero-Naranjo JL, Chan RV, Quiroz-Mercado H (2013) Long-term effect of antiangiogenic therapy for retinopathy of prematurity up to 5 years of follow-up. Retina 33:329–338

    Article  CAS  PubMed  Google Scholar 

  • Mason RM (2009) Connective tissue growth factor(CCN2), a pathogenic factor in diabetic nephropathy. What does it do? How does it do it? J Cell Commun Signal 3:95–104

    Article  PubMed Central  PubMed  Google Scholar 

  • Mintz-Hittner HA (2012) Treatment of retinopathy of prematurity with vascular endothelial growth factor inhibitors. Early Hum Dev 88:937–941

    Article  CAS  PubMed  Google Scholar 

  • Mo FE, Lau LF (2006) The matricellular protein CCN1 is essential for cardiac development. Circ Res 99:961–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF (2002) CYR61 (CCN1) Is essential for placental development and vascular integrity. Mol Cell Biol 22:8709–8720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura-Ishizu A, Kurihara T, Okuno Y, Ozawa Y, Kishi K, Goda N, Tsubota K, Okano H, Suda T, Kubota Y (2012) The formation of an angiogenic astrocyte template is regulated by the neuroretina in a HIF-1-dependent manner. Dev Biol 363:106–114

    Article  CAS  PubMed  Google Scholar 

  • Neelam K, Cheung CM, Ohno-Matsui K, Lai TY, Wong TY (2012) Choroidal neovascularization in pathological myopia. Prog Retin Eye Res 31:495–525

    Article  CAS  PubMed  Google Scholar 

  • Perbal B (2013) CCN proteins: A centralized communication network. J Cell Commun Signal. doi:10.1007/s12079-013-0193-7

    Google Scholar 

  • Perkowski S, Sun J, Singhal S, Santiago J, Leikauf GD, Albelda SM (2003) Gene expression profiling of the early pulmonary response to hyperoxia in mice. Am J Respir Cell Mol Biol 28:682–696

    Article  CAS  PubMed  Google Scholar 

  • Planque N, Long LC, Saule S, Bleau AM, Perbal B (2006) Nuclear addressing provides a clue for the transforming activity of amino-truncated CCN3 proteins. J Cell Biochem 99:105–116

    Article  CAS  PubMed  Google Scholar 

  • Provis JM (2001) Development of the primate retinal vasculature. Prog Retin Eye Res 20:799–821

    Article  CAS  PubMed  Google Scholar 

  • Quigley HA (2011) Glaucoma. Lancet 377:1367–1377

    Article  PubMed  Google Scholar 

  • Saint-Geniez M, D’Amore PA (2004) Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol 48:1045–1058

    Article  PubMed  Google Scholar 

  • Schober JM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE, Ugarova TP, Ye RD, Lau LF, Lam SC (2002) Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood 99:4457–4465

    Article  CAS  PubMed  Google Scholar 

  • Schwartz K, Budenz D (2004) Current management of glaucoma. Curr Opin Ophthalmol 15:119–126

    Article  PubMed  Google Scholar 

  • Segarini PR, Nesbitt JE, Li D, Hays LG, Yates JR III, Carmichael DF (2001) The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor. J Biol Chem 276:40659–40667

    Article  CAS  PubMed  Google Scholar 

  • Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T, Tamatani T, Tezuka K, Takemura M, Matsumura T, Takigawa M (1999) Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem 126:137–145

    Article  CAS  PubMed  Google Scholar 

  • Shimoyama T, Hiraoka S, Takemoto M, Koshizaka M, Tokuyama H, Tokuyama T, Watanabe A, Fujimoto M, Kawamura H, Sato S, Tsurutani Y, Saito Y, Perbal B, Koseki H, Yokote K (2010) CCN3 Inhibits neointimal hyperplasia through modulation of smooth muscle cell growth and migration. Arterioscler Thromb Vasc Biol 30:675–682

    Article  CAS  PubMed  Google Scholar 

  • Si W, Kang Q, Luu HH, Park JK, Luo Q, Song WX, Jiang W, Luo X, Li X, Yin H, Montag AG, Haydon RC, He TC (2006) CCN1/Cyr61 Is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 26:2955–2964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stalmans I (2005) Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome. Verh K Acad Geneeskd Belg 67:229–276

    CAS  PubMed  Google Scholar 

  • Tamm ER (2009) The trabecular meshwork outflow pathways: Structural and functional aspects. Exp Eye Res 88:648–655

    Article  CAS  PubMed  Google Scholar 

  • Tamura I, Rosenbloom J, Macarak E, Chaqour B (2001) Regulation of Cyr61 gene expression by mechanical stretch through multiple signaling pathways. Am J Physiol Cell Physiol 281:C1524–C1532

    CAS  PubMed  Google Scholar 

  • Twigg SM, Chen MM, Joly AH, Chakrapani SD, Tsubaki J, Kim HS, Oh Y, Rosenfeld RG (2001) Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein 2) in human fibroblasts: A potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocrinology 142:1760–1769

    Article  CAS  PubMed  Google Scholar 

  • Van Geest RJ, Klaassen I, Lesnik-Oberstein SY, Tan HS, Mura M, Goldschmeding R, Van Noorden CJ, Schlingemann RO (2013) Vitreous TIMP-1 levels associate with neovascularization and TGF-beta2 levels but not with fibrosis in the clinical course of proliferative diabetic retinopathy. J Cell Commun Signal 7:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogel V (2006) Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annu Rev Biophys Biomol Struct 35:459–488

    Article  CAS  PubMed  Google Scholar 

  • Wahab NA, Brinkman H, Mason RM (2001) Uptake and intracellular transport of the connective tissue growth factor: A potential mode of action. Biochem J 359:89–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warden SM, Andreoli CM, Mukai S (2007) The Wnt signaling pathway in familial exudative vitreoretinopathy and norrie disease. Semin Ophthalmol 22:211–217

    Article  PubMed  Google Scholar 

  • Watanabe D, Takagi H, Suzuma K, Oh H, Ohashi H, Honda Y (2005) Expression of connective tissue growth factor and its potential role in choroidal neovascularization. Retina 25:911–918

    Article  PubMed  Google Scholar 

  • Workman G, Sage EH (2011) Identification of a sequence in the matricellular protein SPARC that interacts with the scavenger receptor stabilin-1. J Cell Biochem 112:1003–1008

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Liu H, Williams I, Chaqour B (2007) Matrix metalloproteinase-2 expression and apoptogenic activity in retinal pericytes: Implications in diabetic retinopathy. Ann N Y Acad Sci 1103:196–201

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Madigan MC, van Driel D, Maslim J, Billson FA, Provis JM, Penfold PL (2000) The human hyaloid system: Cell death and vascular regression. Exp Eye Res 70:767–776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the National Eye Institute of the National Institutes of Health EY022091-01 and Research for the Prevention of Blindness Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Chaqour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., Chaqour, B. Cysteine-rich protein 61 (CCN1) and connective tissue growth factor (CCN2) at the crosshairs of ocular neovascular and fibrovascular disease therapy. J. Cell Commun. Signal. 7, 253–263 (2013). https://doi.org/10.1007/s12079-013-0206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-013-0206-6

Keywords

Navigation