Skip to main content
Log in

A network map of BDNF/TRKB and BDNF/p75NTR signaling system

  • Nuts and Bolts
  • Published:
Journal of Cell Communication and Signaling Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

BDNF:

Brain-derived neurotrophic factor

TRK:

Tropomyosin-related kinase

NGF:

Nerve growth factor

NT:

Neurotrophin

p75NTR:

p75 neurotrophin receptor

PPIs:

Protein–protein interactions

PTMs:

Post-translational modifications

BioPAX:

Biological PAthway eXchange

SBML:

Systems Biology Markup Language

PSI-MI:

Proteomics Standards Initiative for Molecular Interaction

References

  • Allen SJ, Dawbarn D, Eckford SD, Wilcock GK, Ashcroft M, Colebrook SM, Feeney R, MacGowan SH (1994) Cloning of a non-catalytic form of human trkB and distribution of messenger RNA for trkB in human brain. Neuroscience 60:825–834

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Yamada M, Ohnishi H, Sano SI, Hatanaka H (2000) BIT/SHPS-1 enhances brain-derived neurotrophic factor-promoted neuronal survival in cultured cerebral cortical neurons. J Neurochem 75:1502–1510

    Article  CAS  PubMed  Google Scholar 

  • Barbacid M (1995) Neurotrophic factors and their receptors. Curr Opin Cell Biol 7:148–155

    Article  CAS  PubMed  Google Scholar 

  • Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549–553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burke MA, Bothwell M (2003) p75 neurotrophin receptor mediates neurotrophin activation of NF-kappa B and induction of iNOS expression in P19 neurons. J Neurobiol 55:191–203

    Article  CAS  PubMed  Google Scholar 

  • Chao MV, Bothwell MA, Ross AH, Koprowski H, Lanahan AA, Buck CR, Sehgal A (1986) Gene transfer and molecular cloning of the human NGF receptor. Science 232:518–521

    Article  CAS  PubMed  Google Scholar 

  • Cheng PL, Song AH, Wong YH, Wang S, Zhang X, Poo MM (2011) Self-amplifying autocrine actions of BDNF in axon development. Proc Natl Acad Sci U S A 108:18430–18435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David MD, Yeramian A, Dunach M, Llovera M, Canti C, de Herreros AG, Comella JX, Herreros J (2008) Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential beta-catenin phosphorylation. J Cell Sci 121:2718–2730

    Article  CAS  PubMed  Google Scholar 

  • Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’Eustachio P, Schaefer C et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dey G, Radhakrishnan A, Syed N, Thomas JK, Nadig A, Srikumar K, Mathur PP, Pandey A, Lin SK et al (2012) Signaling network of Oncostatin M pathway. J Cell Commun Signal. doi:10.1007/s12079-012-0186-y

  • Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Marti E (1999) BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 58:729–739

    Article  CAS  PubMed  Google Scholar 

  • Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19:1031–1047

    Article  CAS  PubMed  Google Scholar 

  • Goel R, Harsha HC, Pandey A, Prasad TSK (2012a) Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol Biosyst 8:453–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goel R, Raju R, Maharudraiah J, Kumar GSS, Ghosh K, Kumar A, Lashmi PT, Sharma J, Sharma R et al (2012b) A signaling network of thyroid-stimulating hormone. J Proteomics Bioinforma 4:238–241

    Google Scholar 

  • Groth RD, Mermelstein PG (2003) Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression. J Neurosci 23:8125–8134

    CAS  PubMed  Google Scholar 

  • Hall J, Thomas KL, Everitt BJ (2000) Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci 3:533–535

    Article  CAS  PubMed  Google Scholar 

  • Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U et al (2004) The HUPO PSI’s molecular interaction format—a community standard for the representation of protein interaction data. Nat Biotechnol 22:177–183

    Article  CAS  PubMed  Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  PubMed  Google Scholar 

  • Jadhav T, Geetha T, Jiang J, Wooten MW (2008) Identification of a consensus site for TRAF6/p62 polyubiquitination. Biochem Biophys Res Commun 371:521–524

    Google Scholar 

  • Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P, Sihra TS (2000) Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci 3:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kajiya M, Shiba H, Fujita T, Ouhara K, Takeda K, Mizuno N, Kawaguchi H, Kitagawa M, Takata T et al (2008) Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem 283:16259–16267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kandasamy K, Keerthikumar S, Raju R, Prasad TSK, Ramachandra YL, Mohan S, Pandey A (2009) PathBuilder—open source software for annotating and developing pathway resources. Bioinformatics 25:2860–2862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S et al (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaplan DR, Martin-Zanca D, Parada LF (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350:158–160

    Article  CAS  PubMed  Google Scholar 

  • Kenchappa RS, Tep C, Korade Z, Urra S, Bronfman FC, Yoon SO, Carter BD (2010) p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. J Biol Chem 285:20358–20368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SH, Won SJ, Sohn S, Kwon HJ, Lee JY, Park JH, Gwag BJ (2002) Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translational activation of NADPH oxidase. J Cell Biol 159:821–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein R, Parada LF, Coulier F, Barbacid M (1989) trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J 8:3701–3709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, Cordon-Cardo C, Jones KR, Reichardt LF et al (1991) The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66:395–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamballe F, Klein R, Barbacid M (1991) trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66:967–979

    Article  CAS  PubMed  Google Scholar 

  • Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde YA (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–152

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Bella AJ, Lue TF, Lin CS (2006) Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part 2. J Sex Med 3:821–827, discussion 828–829

    Article  CAS  PubMed  Google Scholar 

  • Lindsay RM (1996) Role of neurotrophins and trk receptors in the development and maintenance of sensory neurons: an overview. Philos Trans R Soc Lond B Biol Sci 351:365–373

    Article  CAS  PubMed  Google Scholar 

  • Lommatzsch M, Braun A, Mannsfeldt A, Botchkarev VA, Botchkareva NV, Paus R, Fischer A, Lewin GR, Renz H (1999) Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. Am J Pathol 155:1183–1193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin-Zanca D, Hughes SH, Barbacid M (1986) A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319:743–748

    Article  CAS  PubMed  Google Scholar 

  • Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerstrom T, Yfanti C, Broholm C et al (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Yamauchi J, Tanoue A, Wu C, Mobley WC (2006) TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proc Natl Acad Sci U S A 103:10444–10449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawara A, Liu XG, Ikegaki N, White PS, Yamashiro DJ, Nycum LM, Biegel JA, Brodeur GM (1995) Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2). Genomics 25:538–546

    Article  CAS  PubMed  Google Scholar 

  • Namekata K, Harada C, Guo X, Kimura A, Kittaka D, Watanabe H, Harada T (2012) Dock3 stimulates axonal outgrowth via GSK-3beta-mediated microtubule assembly. J Neurosci 32:264–274

    Article  CAS  PubMed  Google Scholar 

  • Nanjappa V, Raju R, Muthusamy B, Sharma J, Thomas JK, Nidhina PAH, Harsha HC, Pandey A, Anilkumar G et al (2011) A comprehensive curated reaction map of leptin signaling pathway. J Proteomics Bioinforma 4:184–189

    Google Scholar 

  • Negro A, Tavella A, Grandi C, Skaper SD (1994) Production and characterization of recombinant rat brain-derived neurotrophic factor and neurotrophin-3 from insect cells. J Neurochem 62:471–478

    Article  CAS  PubMed  Google Scholar 

  • Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL (2002) The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 71:651–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohira K, Shimizu K, Hayashi M (2001) TrkB dimerization during development of the prefrontal cortex of the macaque. J Neurosci Res 65:463–469

    Article  CAS  PubMed  Google Scholar 

  • Ou LC, Gean PW (2006) Regulation of amygdala-dependent learning by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol-3-kinase. Neuropsychopharmacology 31:287–296

    Article  CAS  PubMed  Google Scholar 

  • Pezet S, Malcangio M, Lever IJ, Perkinton MS, Thompson SW, Williams RJ, McMahon SB (2002) Noxious stimulation induces Trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol Cell Neurosci 21:684–695

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan A, Raju R, Tuladhar N, Subbannayya T, Thomas JK, Goel R, Telikicherla D, Palapetta SM, Rahiman BA et al (2012) A pathway map of prolactin signaling. J Cell Commun Signal 6:169–173

    Article  PubMed Central  PubMed  Google Scholar 

  • Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, Kurian Thomas J, Sharma J, Rahiman BA et al (2011a) A comprehensive manually curated reaction map of RANKL/RANK-signaling pathway. Database (Oxford) 2011:bar021

  • Raju R, Nanjappa V, Balakrishnan L, Radhakrishnan A, Thomas JK, Sharma J, Tian M, Palapetta SM, Subbannayya T et al (2011b) NetSlim: high-confidence curated signaling maps. Database (Oxford) 2011:bar032

  • Shalizi A, Lehtinen M, Gaudilliere B, Donovan N, Han J, Konishi Y, Bonni A (2003) Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern. J Neurosci 23:7326–7336

    CAS  PubMed  Google Scholar 

  • Soman S, Raju R, Sandhya VK, Advani J, Khan AA, Harsha HC, Prasad TSK, Sudhakaran PR, Pandey A et al (2013) A multicellular signal transduction network of AGE/RAGE signaling. J Cell Commun Signal 7:19–23

    Article  PubMed Central  PubMed  Google Scholar 

  • Subbannayya T, Balakrishnan L, Sudarshan G, Advani J, Kumar S, Mahmood R, Nair B, Sirdeshmukh R, Mukherjee KK et al (2013) An integrated map of corticotropin-releasing hormone signaling pathway. J Cell Commun Signal. doi:10.1007/s12079-013-0197-3

  • Sugimoto T, Kuroda H, Horii Y, Moritake H, Tanaka T, Hattori S (2001) Signal transduction pathways through TRK-A and TRK-B receptors in human neuroblastoma cells. Jpn J Cancer Res 92:152–160

    Article  CAS  PubMed  Google Scholar 

  • Szatmari E, Kalita KB, Kharebava G, Hetman M (2007) Role of kinase suppressor of Ras-1 in neuronal survival signaling by extracellular signal-regulated kinase 1/2. J Neurosci 27:11389–11400

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Hayashi S, Kakita A, Wakabayashi K, Fukuda M, Kameyama S, Tanaka R, Takahashi H, Nawa H (1999) Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y. Brain Res 818:579–582

    Article  CAS  PubMed  Google Scholar 

  • Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K, Nawa H (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci 24:9760–9769

    Article  CAS  PubMed  Google Scholar 

  • Telikicherla D, Ambekar A, Palapetta SM, Dwivedi SB, Raju R, Sharma J, Prasad TSK, Ramachandra Y, Mohan SS et al (2011) A comprehensive curated resource for follicle stimulating hormone signaling. BMC Res Notes 4:408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thakker-Varia S, Alder J, Crozier RA, Plummer MR, Black IB (2001) Rab3A is required for brain-derived neurotrophic factor-induced synaptic plasticity: transcriptional analysis at the population and single-cell levels. J Neurosci 21:6782–6790

    CAS  PubMed  Google Scholar 

  • Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M, Persson H (1993) Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 10:475–489

    Article  CAS  PubMed  Google Scholar 

  • van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinforma 9:399

    Article  Google Scholar 

  • Wu K, Xu JL, Suen PC, Levine E, Huang YY, Mount HT, Lin SY, Black IB (1996) Functional trkB neurotrophin receptors are intrinsic components of the adult brain postsynaptic density. Brain Res Mol Brain Res 43:286–290

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Len GW, McAuliffe G, Ma C, Tai JP, Xu F, Black IB (2004) Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms. Brain Res Mol Brain Res 130:178–186

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Ohnishi H, Sano S, Araki T, Nakatani A, Ikeuchi T, Hatanaka H (1999) Brain-derived neurotrophic factor stimulates interactions of Shp2 with phosphatidylinositol 3-kinase and Grb2 in cultured cerebral cortical neurons. J Neurochem 73:41–49

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Tanabe K, Wada K, Shimoke K, Ishikawa Y, Ikeuchi T, Koizumi S, Hatanaka H (2001) Differences in survival-promoting effects and intracellular signaling properties of BDNF and IGF-1 in cultured cerebral cortical neurons. J Neurochem 78:940–951

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Numakawa T, Koshimizu H, Tanabe K, Wada K, Koizumi S, Hatanaka H (2002) Distinct usages of phospholipase C gamma and Shc in intracellular signaling stimulated by neurotrophins. Brain Res 955:183–190

    Article  CAS  PubMed  Google Scholar 

  • Yeiser EC, Rutkoski NJ, Naito A, Inoue J, Carter BD (2004) Neurotrophin signaling through the p75 receptor is deficient in traf6-/- mice. J Neurosci 24:10521–10529

    Article  CAS  PubMed  Google Scholar 

  • Yin YX, Sun ZP, Huang SH, Zhao L, Geng Z, Chen ZY (2010) RanBPM contributes to TrkB signaling and regulates brain-derived neurotrophic factor-induced neuronal morphogenesis and survival. J Neurochem 114:110–121

    CAS  PubMed  Google Scholar 

  • Zhang S, Guo D, Luo W, Zhang Q, Zhang Y, Li C, Lu Y, Cui Z, Qiu X (2010) TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells. BMC Cancer 10:43

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao CT, Li K, Li JT, Zheng W, Liang XJ, Geng AQ, Li N, Yuan XB (2009) PKCdelta regulates cortical radial migration by stabilizing the Cdk5 activator p35. Proc Natl Acad Sci U S A 106:21353–21358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Department of Biotechnology, Government of India for research support to the Institute of Bioinformatics, Bangalore. Varot K. Sandhya is a recipient of Inspire Fellowship from the Department of Science and Technology (DST), Government of India. Renu Verma is a recipient of Junior Research Fellowship from the University Grants Commission (UGC), Government of India. Rakesh Sharma is a Research Associate supported by the Department of Biotechnology (DBT), Government of India. Aneesha Radhakrishnan is a recipient of Senior Research Fellowship from the Council of Scientific and Industrial Research (CSIR), Government of India. We acknowledge Dr. Renu Goel for her assistance in curation.

Conflict of interests

The author(s) declared no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Keshava Prasad.

Additional information

Varot K. Sandhya and Rajesh Raju contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandhya, V.K., Raju, R., Verma, R. et al. A network map of BDNF/TRKB and BDNF/p75NTR signaling system. J. Cell Commun. Signal. 7, 301–307 (2013). https://doi.org/10.1007/s12079-013-0200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-013-0200-z

Keywords

Navigation