Skip to main content
Log in

Post-transcriptional regulation in cancer progression

Microenvironmental control of alternative splicing and translation

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The microenvironment acts as a conduit for cellular communication, delivering signals that direct development and sustain tissue homeostasis. In pathologies such as cancer, this integral function of the microenvironment is hijacked to support tumor growth and progression. Cells sense the microenvironment via signal transduction pathways culminating in altered gene expression. In addition to induced transcriptional changes, the microenvironment exerts its effect on the cell through regulation of post-transcriptional processes including alternative splicing and translational control. Here we describe how alternative splicing and protein translation are controlled by microenvironmental parameters such as oxygen availability. We also emphasize how these pathways can be utilized to support processes that are hallmarks of cancer such as angiogenesis, proliferation, and cell migration. We stress that cancer cells respond to their microenvironment through an integrated regulation of gene expression at multiple levels that collectively contribute to disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abcouwer SF, Marjon PL, Loper RK, Vander Jagt DL (2002) Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress. Invest Ophthalmol Vis Sci 43:2791–2798

    PubMed  Google Scholar 

  • Aoki M, Blazek E, Vogt PK (2001) A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc Natl Acad Sci U S A 98:136–141

    Article  PubMed  CAS  Google Scholar 

  • Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM, Manivel JC, Sonenberg N, Yee D, Bitterman PB et al (2004) Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5:553–563

    Article  PubMed  CAS  Google Scholar 

  • Babic AM, Kireeva ML, Kolesnikova TV, Lau LF (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A 95:6355–6360

    Article  PubMed  CAS  Google Scholar 

  • Bardella C, Costa B, Maggiora P, Patane’ S, Olivero M, Ranzani GN, De Bortoli M, Comoglio PM, Di Renzo MF (2004) Truncated RON tyrosine kinase drives tumor cell progression and abrogates cell-cell adhesion through E-cadherin transcriptional repression. Cancer Res 64:5154–5161

    Article  PubMed  CAS  Google Scholar 

  • Bates DO, Cui T-G, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D, Harper SJ (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62:4123–4131

    PubMed  CAS  Google Scholar 

  • Bedogni B, Powell MB (2009) Hypoxia, melanocytes and melanoma - survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 22:166–174

    Article  PubMed  CAS  Google Scholar 

  • Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Gulino A, Screpanti I (2007) Notch and Ikaros: not only converging players in T cell leukemia. Cell cycle 6:2730–2734

    Article  PubMed  CAS  Google Scholar 

  • Beltran M, Puig I, Peña C, García JM, Alvarez AB, Peña R, Bonilla F, de Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22:756–769

    Article  PubMed  CAS  Google Scholar 

  • Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP (2006) PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442:779–785

    Article  PubMed  CAS  Google Scholar 

  • Bevan HS, van den Akker NMS, Qiu Y, Polman JAE, Foster RR, Yem J, Nishikawa A, Satchell SC, Harper SJ, Gittenberger-de Groot AC et al (2008) The alternatively spliced anti-angiogenic family of VEGF isoforms VEGFxxxb in human kidney development. Nephron Physiol 110:57–67

    Article  CAS  Google Scholar 

  • Bielli P, Busa R, Paronetto MP, Sette C (2011) The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer 18:91–102

    Google Scholar 

  • Blaustein M, Pelisch F, Tanos T, Muñoz MJ, Wengier D, Quadrana L, Sanford JR, Muschietti JP, Kornblihtt AR, Cáceres JF et al (2005) Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol 12:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Bomsztyk K, Denisenko O, Ostrowski J (2004) hnRNP K: one protein multiple processes. Bioessays 26:629–638

    Article  PubMed  CAS  Google Scholar 

  • Bornes S, Boulard M, Hieblot C, Zanibellato C, Iacovoni JS, Prats H, Touriol C (2004) Control of the vascular endothelial growth factor internal ribosome entry site (IRES) activity and translation initiation by alternatively spliced coding sequences. J Biol Chem 279:18717–18726

    Article  PubMed  CAS  Google Scholar 

  • Catena R, Larzabal L, Larrayoz M, Molina E, Hermida J, Agorreta J, Montes R, Pio R, Montuenga LM, Calvo A (2010) VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A. Mol Cancer 9:320

    Article  PubMed  CAS  Google Scholar 

  • Chang M-L, Chen J-C, Alonso CR, Kornblihtt AR, Bissell DM (2004) Regulation of fibronectin splicing in sinusoidal endothelial cells from normal or injured liver. Proc Natl Acad Sci USA 101:18093–18098

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury A, Chander P, Howe PH (2010a) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. RNA 16:1449–1462

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH (2010b) TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol 12:286–293

    PubMed  CAS  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Bachelder RE, Lipscomb EA, Shaw LM, Mercurio AM (2002) Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma cells. J Cell Biol 158:165–174

    Article  PubMed  CAS  Google Scholar 

  • Collesi C, Santoro MM, Gaudino G, Comoglio PM (1996) A splicing variant of the RON transcript induces constitutive tyrosine kinase activity and an invasive phenotype. Mol Cell Biol 16:5518–5526

    PubMed  CAS  Google Scholar 

  • Créancier L, Morello D, Mercier P, Prats AC (2000) Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. J Cell Biol 150:275–281

    Article  PubMed  Google Scholar 

  • Dales J-P, Beaufils N, Silvy M, Picard C, Pauly V, Pradel V, Formisano-Tréziny C, Bonnier P, Giusiano S, Charpin C et al (2010) Hypoxia inducible factor 1alpha gene (HIF-1alpha) splice variants: potential prognostic biomarkers in breast cancer. BMC Med 8:44

    Article  PubMed  CAS  Google Scholar 

  • David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 24:2343–2364

    Article  PubMed  CAS  Google Scholar 

  • DeFatta RJ, Nathan CO, De Benedetti A (2000) Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line. Laryngoscope 110:928–933

    Article  PubMed  CAS  Google Scholar 

  • Di Modugno F, Bronzi G, Scanlan MJ, Del Bello D, Cascioli S, Venturo I, Botti C, Nicotra MR, Mottolese M, Natali PG et al (2004) Human Mena protein, a serex-defined antigen overexpressed in breast cancer eliciting both humoral and CD8+ T-cell immune response. Int J Cancer 109:909–918

    Article  PubMed  CAS  Google Scholar 

  • Di Modugno F, Mottolese M, Di Benedetto A, Conidi A, Novelli F, Perracchio L, Venturo I, Botti C, Jager E, Santoni A et al (2006) The cytoskeleton regulatory protein hMena (ENAH) is overexpressed in human benign breast lesions with high risk of transformation and human epidermal growth factor receptor-2-positive/hormonal receptor-negative tumors. Clin Cancer Res 12:1470–1478

    Article  PubMed  Google Scholar 

  • Eberle J, Krasagakis K, Orfanos CE (1997) Translation initiation factor eIF-4A1 mRNA is consistently overexpressed in human melanoma cells in vitro. Int J Cancer 71:396–401

    Article  PubMed  CAS  Google Scholar 

  • Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    Article  PubMed  CAS  Google Scholar 

  • Evdokimova V, Ovchinnikov LP, Sorensen PH (2006) Y-box binding protein 1: providing a new angle on translational regulation. Cell Cycle 5:1143–1147

    Article  PubMed  CAS  Google Scholar 

  • Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D, Sorokin A, Ovchinnikov LP, Davicioni E, Triche TJ et al (2009) Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 15:402–415

    Article  PubMed  CAS  Google Scholar 

  • Fackenthal JD, Godley LA (2008) Aberrant RNA splicing and its functional consequences in cancer cells. Dis Model Mech 1:37–42

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543

    Article  PubMed  CAS  Google Scholar 

  • Fingar DC, Salama S, Tsou C, Harlow E, Blenis J (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472–1487

    Article  PubMed  CAS  Google Scholar 

  • Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24:200–216

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Hanahan D (1991) Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 22:339–347

    PubMed  CAS  Google Scholar 

  • Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD (2010) Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139:85–97

    Article  PubMed  CAS  Google Scholar 

  • Fraser D, Wakefield L, Phillips A (2002) Independent regulation of transforming growth factor-beta1 transcription and translation by glucose and platelet-derived growth factor. Am J Pathol 161:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Gardner LB (2010) Nonsense-mediated RNA decay regulation by cellular stress: implications for tumorigenesis. Mol Cancer Res 8:295–308

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Zhou F, Chen H, Cui C, Liu D, Li Q, Yang Z, Wu G, Sun S, Gu J et al (2010) Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells. Biochem Biophys Res Commun 397:711–717

    Article  PubMed  CAS  Google Scholar 

  • Genolet R, Rahim G, Gubler-Jaquier P, Curran J (2011) The translational response of the human mdm2 gene in HEK293T cells exposed to rapamycin: a role for the 5′-UTRs. Nucleic Acids Res 39:989–1003

    Article  PubMed  CAS  Google Scholar 

  • Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, Green MR, Riva S, Biamonti G (2005) Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Molecular cell 20:881–890

    Article  PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826

    Article  PubMed  CAS  Google Scholar 

  • Görlach A, Camenisch G, Kvietikova I, Vogt L, Wenger RH, Gassmann M (2000) Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions. Biochim Biophys Acta 1493:125–134

    Article  PubMed  Google Scholar 

  • Goswami S, Philippar U, Sun D, Patsialou A, Avraham J, Wang W, Di Modugno F, Nistico P, Gertler FB, Condeelis JS (2009) Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo. Clin Exp Metastasis 26:153–159

    Article  PubMed  CAS  Google Scholar 

  • Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN, Schwier P, Capen A, Goode RL, Dowless MS et al (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 117:2638–2648

    Article  PubMed  CAS  Google Scholar 

  • Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JAM, van Diest PJ, van der Wall E (2005) Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol 206:291–304

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Hang X, Li P, Li Z, Qu W, Yu Y, Li H, Shen Z, Zheng H, Gao Y, Wu Y et al (2009) Transcription and splicing regulation in human umbilical vein endothelial cells under hypoxic stress conditions by exon array. BMC Genom 10:126

    Article  CAS  Google Scholar 

  • Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8:880–887

    Article  PubMed  CAS  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004

    Article  PubMed  CAS  Google Scholar 

  • Hirschfeld M, Zur Hausen A, Bettendorf H, Jager M, Stickeler E (2009) Alternative splicing of Cyr61 is regulated by hypoxia and significantly changed in breast cancer. Cancer Res 69:2082–2090

    Article  PubMed  CAS  Google Scholar 

  • Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327

    Article  PubMed  CAS  Google Scholar 

  • Hope NR, Murray GI (2011) The expression profile of RNA-binding proteins in primary and metastatic colorectal cancer: relationship of heterogeneous nuclear ribonucleoproteins with prognosis. Hum Pathol 42:393–402

    Article  PubMed  CAS  Google Scholar 

  • Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Steitz JA (2005) SRprises along a messenger’s journey. Molecular cell 17:613–615

    Article  PubMed  CAS  Google Scholar 

  • Huang C-S, Shen C-Y, Wang H-W, Wu P-E, Cheng C-W (2007) Increased expression of SRp40 affecting CD44 splicing is associated with the clinical outcome of lymph node metastasis in human breast cancer. Clin Chim Acta 384:69–74

    Article  PubMed  CAS  Google Scholar 

  • Huez I, Créancier L, Audigier S, Gensac MC, Prats AC, Prats H (1998) Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 18:6178–6190

    PubMed  CAS  Google Scholar 

  • Huez I, Bornes S, Bresson D, Créancier L, Prats H (2001) New vascular endothelial growth factor isoform generated by internal ribosome entry site-driven CUG translation initiation. Mol Endocrinol 15:2197–2210

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Horiuchi A, Wang C, Oka K, Ohira S, Nikaido T, Konishi I (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163:1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Johannes G, Carter MS, Eisen MB, Brown PO, Sarnow P (1999) Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci U S A 96:13118–13123

    Article  PubMed  CAS  Google Scholar 

  • Karbowniczek M, Spittle CS, Morrison T, Wu H, Henske EP (2008) mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 128:980–987

    Article  PubMed  CAS  Google Scholar 

  • Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A (1995) The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int J Cancer 64:27–31

    Article  PubMed  CAS  Google Scholar 

  • Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65:785–790

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi H, Pino MS, Zeng M, Shirasawa S, Chung DC (2009) Oncogenic KRAS and BRAF differentially regulate hypoxia-inducible factor-1alpha and -2alpha in colon cancer. Cancer Res 69:8499–8506

    Article  PubMed  CAS  Google Scholar 

  • Kireeva ML, Mo FE, Yang GP, Lau LF (1996) Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol Cell Biol 16:1326–1334

    PubMed  CAS  Google Scholar 

  • Kornblihtt AR (2007) Coupling transcription and alternative splicing. Adv Exp Med Biol 623:175–189

    Article  PubMed  Google Scholar 

  • Kroczynska B, Kaur S, Platanias LC (2009) Growth suppressive cytokines and the AKT/mTOR pathway. Cytokine 48:138–143

    Article  PubMed  Google Scholar 

  • Kunz M, Moeller S, Koczan D, Lorenz P, Wenger RH, Glocker MO, Thiesen HJ, Gross G, Ibrahim SM (2003) Mechanisms of hypoxic gene regulation of angiogenesis factor Cyr61 in melanoma cells. J Biol Chem 278:45651–45660

    Article  PubMed  CAS  Google Scholar 

  • Ladomery MR, Harper SJ, Bates DO (2007) Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett 249:133–142

    Article  PubMed  CAS  Google Scholar 

  • Lang KJ, Kappel A, Goodall GJ (2002) Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13:1792–1801

    Article  PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345:544–547

    Article  PubMed  CAS  Google Scholar 

  • Lefave CV, Squatrito M, Vorlova S, Rocco GL, Brennan CW, Holland EC, Pan YX, Cartegni L (2011) Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J.

  • Lei J, Jiang A, Pei D (1998) Identification and characterization of a new splicing variant of vascular endothelial growth factor: VEGF183. Biochim Biophys Acta 1443:400–406

    Article  PubMed  CAS  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  PubMed  CAS  Google Scholar 

  • Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12:406–414

    Article  PubMed  CAS  Google Scholar 

  • Lewis TS, Hunt JB, Aveline LD, Jonscher KR, Louie DF, Yeh JM, Nahreini TS, Resing KA, Ahn NG (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell 6:1343–1354

    Article  PubMed  CAS  Google Scholar 

  • Li BD, Liu L, Dawson M, De Benedetti A (1997) Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 79:2385–2390

    Article  PubMed  CAS  Google Scholar 

  • Li S, Takasu T, Perlman DM, Peterson MS, Burrichter D, Avdulov S, Bitterman PB, Polunovsky VA (2003) Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J Biol Chem 278:3015–3022

    Article  PubMed  CAS  Google Scholar 

  • Li CY, Chu JY, Yu JK, Huang XQ, Liu XJ, Shi L, Che YC, Xie JY (2004a) Regulation of alternative splicing of Bcl-x by IL-6, GM-CSF and TPA. Cell research 14:473–479

    Article  PubMed  CAS  Google Scholar 

  • Li S, Perlman DM, Peterson MS, Burrichter D, Avdulov S, Polunovsky VA, Bitterman PB (2004b) Translation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis. J Biol Chem 279:21312–21317

    Article  PubMed  CAS  Google Scholar 

  • Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Kuo IH, Chang CC, Chu CY, Chen HY, Lin BR, Sureshbabu M, Shih HJ, Kuo ML (2008) Involvement of hypoxia-inducing factor-1alpha-dependent plasminogen activator inhibitor-1 up-regulation in Cyr61/CCN1-induced gastric cancer cell invasion. J Biol Chem 283:15807–15815

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21:521–531

    Article  PubMed  CAS  Google Scholar 

  • Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science (New York, NY) 327:996–1000

    Article  CAS  Google Scholar 

  • Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T (2011) Epigenetics in Alternative Pre-mRNA Splicing. Cell 144:16–26

    Article  PubMed  CAS  Google Scholar 

  • Lynch KW (2007) Regulation of alternative splicing by signal transduction pathways. Adv Exp Med Biol 623:161–174

    Article  PubMed  Google Scholar 

  • Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N (2006) mTOR, translation initiation and cancer. Oncogene 25:6416–6422

    Article  PubMed  CAS  Google Scholar 

  • Martin MM, Buckenberger JA, Knoell DL, Strauch AR, Elton TS (2006) TGF-beta(1) regulation of human AT(1) receptor mRNA splice variants harboring exon 2. Mol Cell Endocrinol 249:21–31

    Article  PubMed  CAS  Google Scholar 

  • Matter N, Herrlich P, König H (2002) Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420:691–695

    Article  PubMed  CAS  Google Scholar 

  • Michlewski G, Sanford JR, Cáceres JF (2008) The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Molecular cell 30:179–189

    Article  PubMed  CAS  Google Scholar 

  • Miyagi Y, Sugiyama A, Asai A, Okazaki T, Kuchino Y, Kerr SJ (1995) Elevated levels of eukaryotic translation initiation factor eIF-4E, mRNA in a broad spectrum of transformed cell lines. Cancer Lett 91:247–252

    Article  PubMed  CAS  Google Scholar 

  • Moller-Levet CS, Betts GNJ, Harris AL, Homer JJ, West CML, Miller CJ (2009) Exon array analysis of head and neck cancers identifies a hypoxia related splice variant of LAMA3 associated with a poor prognosis. PLoS Comput Biol 5:e1000571

    Article  PubMed  CAS  Google Scholar 

  • Mukudai Y, Kubota S, Eguchi T, Sumiyoshi K, Janune D, Kondo S, Shintani S, Takigawa M (2010) A coding RNA segment that enhances the ribosomal recruitment of chicken ccn1 mRNA. J Cell Biochem 111:1607–1618

    Article  PubMed  CAS  Google Scholar 

  • Nasr Z, Robert F, Porco JA Jr, Muller WJ, Pelletier J (2012) eIF4F suppression in breast cancer affects maintenance and progression. Oncogene.

  • Nathan CO, Carter P, Liu L, Li BD, Abreo F, Tudor A, Zimmer SG, De Benedetti A (1997) Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene 15:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, Ladomery MR, Harper SJ, Bates DO (2008) Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 121:3487–3495

    Article  PubMed  CAS  Google Scholar 

  • Nowak DG, Amin EM, Rennel ES, Hoareau-Aveilla C, Gammons M, Damodoran G, Hagiwara M, Harper SJ, Woolard J, Ladomery MR et al (2010) Regulation of Vascular Endothelial Growth Factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. J Biol Chem 285:5532–5540

    Article  PubMed  CAS  Google Scholar 

  • O’Kelly J, Chung A, Lemp N, Chumakova K, Yin D, Wang HJ, Said J, Gui D, Miller CW, Karlan BY et al (2008) Functional domains of CCN1 (Cyr61) regulate breast cancer progression. Int J Oncol 33:59–67

    PubMed  Google Scholar 

  • O’Reilly KE, Warycha M, Davies MA, Rodrik V, Zhou XK, Yee H, Polsky D, Pavlick AC, Rosen N, Bhardwaj N et al (2009) Phosphorylated 4E-BP1 is associated with poor survival in melanoma. Clin Cancer Res 15:2872–2878

    Article  PubMed  Google Scholar 

  • Oltean S, Sorg BS, Albrecht T, Bonano VI, Brazas RM, Dewhirst MW, Garcia-Blanco MA (2006) Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc Natl Acad Sci USA 103:14116–14121

    Article  PubMed  CAS  Google Scholar 

  • Patel NA, Kaneko S, Apostolatos HS, Bae SS, Watson JE, Davidowitz K, Chappell DS, Birnbaum MJ, Cheng JQ, Cooper DR (2005) Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CbetaII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem 280:14302–14309

    Article  PubMed  CAS  Google Scholar 

  • Perbal B (2009) Alternative splicing of CCN mRNAs .... it has been upon us. J Cell Commun Signal 3:153–157

    Article  PubMed  Google Scholar 

  • Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N (2007) mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 96:R11–R15

    Article  PubMed  CAS  Google Scholar 

  • Philippar U, Roussos ET, Oser M, Yamaguchi H, Kim H-D, Giampieri S, Wang Y, Goswami S, Wyckoff JB, Lauffenburger DA et al (2008) A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev Cell 15:813–828

    Article  PubMed  CAS  Google Scholar 

  • Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I, Keshet E, Neufeld G (1997) VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 272:7151–7158

    Article  PubMed  CAS  Google Scholar 

  • Pond AC, Herschkowitz JI, Schwertfeger KL, Welm B, Zhang Y, York B, Cardiff RD, Hilsenbeck S, Perou CM, Creighton CJ et al (2010) Fibroblast growth factor receptor signaling dramatically accelerates tumorigenesis and enhances oncoprotein translation in the mouse mammary tumor virus-Wnt-1 mouse model of breast cancer. Cancer Res 70:4868–4879

    Article  PubMed  CAS  Google Scholar 

  • Pópulo H, Soares P, Rocha AS, Silva P, Lopes JM (2010) Evaluation of the mTOR pathway in ocular (uvea and conjunctiva) melanoma. Melanoma Res 20:107–117

    Article  PubMed  CAS  Google Scholar 

  • Postovit L-M, Margaryan NV, Seftor EA, Hendrix MJC (2008) Role of nodal signaling and the microenvironment underlying melanoma plasticity. Pigment Cell Melanoma Res 21:348–357

    Article  PubMed  CAS  Google Scholar 

  • Primot A, Mogha A, Corre S, Roberts K, Debbache J, Adamski H, Dreno B, Khammari A, Lesimple T, Mereau A et al (2010) ERK-regulated differential expression of the Mitf 6a/b splicing isoforms in melanoma. Pigment Cell Melanoma Res 23:93–102

    Article  PubMed  CAS  Google Scholar 

  • Pritchard-Jones RO, Dunn DBA, Qiu Y, Varey AHR, Orlando A, Rigby H, Harper SJ, Bates DO (2007) Expression of VEGFxxxb, the inhibitory isoforms of VEGF, in malignant melanoma. Br J Cancer 97:223–230

    Article  PubMed  CAS  Google Scholar 

  • Remy I, Montmarquette A, Michnick SW (2004) PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol 6:358–365

    Article  PubMed  CAS  Google Scholar 

  • Rennel ES, Waine E, Guan H, Schüler Y, Leenders W, Woolard J, Sugiono M, Gillatt D, Kleinerman ES, Bates DO et al (2008) The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice. Br J Cancer 98:1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Ria R, Reale A, Castrovilli A, Mangialardi G, Dammacco F, Ribatti D, Vacca A (2010) Angiogenesis and progression in human melanoma. Dermatol Res Pract 2010:185687

    PubMed  CAS  Google Scholar 

  • Riley A, Jordan LE, Holcik M (2010) Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress. Nucleic Acids Res 38:4665–4674

    Article  PubMed  CAS  Google Scholar 

  • Rofstad EK, Rasmussen H, Galappathi K, Mathiesen B, Nilsen K, Graff BA (2002) Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res 62:1847–1853

    PubMed  CAS  Google Scholar 

  • Rosenwald IB, Wang S, Savas L, Woda B, Pullman J (2003) Expression of translation initiation factor eIF-2alpha is increased in benign and malignant melanocytic and colonic epithelial neoplasms. Cancer 98:1080–1088

    Article  PubMed  CAS  Google Scholar 

  • Rousseau D, Gingras AC, Pause A, Sonenberg N (1996) The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13:2415–2420

    PubMed  CAS  Google Scholar 

  • Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  • Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH, Burge CB, Gertler FB (2011) An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 7:e1002218

    Article  PubMed  CAS  Google Scholar 

  • Shirakihara T, Horiguchi K, Miyazawa K, Ehata S, Shibata T, Morita I, Miyazono K, Saitoh M (2011) TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J 30:783–795

    Article  PubMed  CAS  Google Scholar 

  • Shuda M, Kondoh N, Tanaka K, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, Hatsuse K, Aihara T et al (2000) Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer Res 20:2489–2494

    PubMed  CAS  Google Scholar 

  • Shultz JC, Goehe RW, Wijesinghe DS, Murudkar C, Hawkins AJ, Shay JW, Minna JD, Chalfant CE (2010) Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a. Cancer Res 70:9185–9196

    Article  PubMed  CAS  Google Scholar 

  • Sodhi A, Chaisuparat R, Hu J, Ramsdell AK, Manning BD, Sausville EA, Sawai ET, Molinolo A, Gutkind JS, Montaner S (2006) The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell 10:133–143

    Article  PubMed  CAS  Google Scholar 

  • Srebrow A, Kornblihtt AR (2006) The connection between splicing and cancer. J Cell Sci 119:2635–2641

    Article  PubMed  CAS  Google Scholar 

  • Stamm S (2002) Signals and their transduction pathways regulating alternative splicing: a new dimension of the human genome. Hum Mol Genet 11:2409–2416

    Article  PubMed  CAS  Google Scholar 

  • Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18:3112–3119

    PubMed  CAS  Google Scholar 

  • Stephens L, Williams R, Hawkins P (2005) Phosphoinositide 3-kinases as drug targets in cancer. Curr Opin Pharmacol 5:357–365

    Article  PubMed  CAS  Google Scholar 

  • Stoneley M, Willis AE (2004) Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23:3200–3207

    Article  PubMed  CAS  Google Scholar 

  • Tacconelli A, Farina AR, Cappabianca L, Desantis G, Tessitore A, Vetuschi A, Sferra R, Rucci N, Argenti B, Screpanti I et al (2004) TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6:347–360

    Article  PubMed  CAS  Google Scholar 

  • Tan A, Bitterman P, Sonenberg N, Peterson M, Polunovsky V (2000) Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1. Oncogene 19:1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Sugimachi K, Saeki H, Kinoshita J, Ohga T, Shimada M, Maehara Y (2001) A novel variant of WISP1 lacking a Von Willebrand type C module overexpressed in scirrhous gastric carcinoma. Oncogene 20:5525–5532

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  • Thomassen M, Blanco A, Montagna M, Hansen TV, Pedersen IS, Gutierrez-Enriquez S, Menendez M, Fachal L, Santamarina M, Steffensen AY, et al (2011) Characterization of BRCA1 and BRCA2 splicing variants: a collaborative report by ENIGMA consortium members. Breast Cancer Res Treat.

  • Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266:11947–11954

    PubMed  CAS  Google Scholar 

  • Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR, Payette J, Holcik M, Pause A, Lee S (2012) An oxygen-regulated switch in the protein synthesis machinery. Nature 486:126–129

    PubMed  CAS  Google Scholar 

  • Vagner S, Gensac MC, Maret A, Bayard F, Amalric F, Prats H, Prats AC (1995) Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol 15:35–44

    PubMed  CAS  Google Scholar 

  • Valacca C, Bonomi S, Buratti E, Pedrotti S, Baralle FE, Sette C, Ghigna C, Biamonti G (2010) Sam68 regulates EMT through alternative splicing-activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene. J Cell Biol 191:87–99

    Article  PubMed  CAS  Google Scholar 

  • Villanueva J, Herlyn M (2008) Melanoma and the tumor microenvironment. Curr Oncol Rep 10:439–446

    Article  PubMed  CAS  Google Scholar 

  • Wagner JA (1991) The fibroblast growth factors: an emerging family of neural growth factors. Curr Top Microbiol Immunol 165:95–118

    Article  PubMed  CAS  Google Scholar 

  • Wang WB, Boing S, Zhou XQ, Ji P, Dong Y, Yao Q, Muller-Tidow C (2002) Identification of metastasis-associated genes in early stage non-small cell lung cancer by subtractive hybridization. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34:273–278

    CAS  Google Scholar 

  • Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64:8585–8594

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE, Condeelis JS (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67:3505–3511

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhao Y, Xiao Z, Chen B, Wei Z, Wang B, Zhang J, Han J, Gao Y, Li L et al (2009) Alternative translation of OCT4 by an internal ribosome entry site and its novel function in stress response. Stem Cells 27:1265–1275

    Article  PubMed  CAS  Google Scholar 

  • Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP (2009a) ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 33:591–601

    Article  PubMed  CAS  Google Scholar 

  • Warzecha CC, Shen S, Xing Y, Carstens RP (2009b) The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events. RNA Biol 6:546–562

    Article  PubMed  CAS  Google Scholar 

  • Watermann DO, Tang Y, Zur Hausen A, Jäger M, Stamm S, Stickeler E (2006) Splicing factor Tra2-beta1 is specifically induced in breast cancer and regulates alternative splicing of the CD44 gene. Cancer Res 66:4774–4780

    Article  PubMed  CAS  Google Scholar 

  • Wen F, Shen A, Shanas R, Bhattacharyya A, Lian F, Hostetter G, Shi J (2010) Higher expression of the heterogeneous nuclear ribonucleoprotein k in melanoma. Ann Surg Oncol 17:2619–2627

    Article  PubMed  Google Scholar 

  • White ES, Sagana RL, Booth AJ, Yan M, Cornett AM, Bloomheart CA, Tsui JL, Wilke CA, Moore BB, Ritzenthaler JD et al (2010) Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway. Exp Cell Res 316:2644–2653

    Article  PubMed  CAS  Google Scholar 

  • Winter SC, Buffa FM, Silva P, Miller C, Valentine HR, Turley H, Shah KA, Cox GJ, Corbridge RJ, Homer JJ et al (2007) Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res 67:3441–3449

    Article  PubMed  CAS  Google Scholar 

  • Woolard J, Wang W-Y, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui T-G, Sugiono M, Waine E, Perrin R et al (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64:7822–7835

    Article  PubMed  CAS  Google Scholar 

  • Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8:851–864

    Article  PubMed  CAS  Google Scholar 

  • Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan WL (1993) Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 13:4513–4522

    PubMed  CAS  Google Scholar 

  • Yang SX, Hewitt SM, Steinberg SM, Liewehr DJ, Swain SM (2007) Expression levels of eIF4E, VEGF, and cyclin D1, and correlation of eIF4E with VEGF and cyclin D1 in multi-tumor tissue microarray. Oncol Rep 17:281–287

    PubMed  CAS  Google Scholar 

  • Yin JY, Dong Z, Liu ZQ, Zhang JT (2011) Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 31:1–15

    Article  PubMed  CAS  Google Scholar 

  • Young RM, Wang SJ, Gordan JD, Ji X, Liebhaber SA, Simon MC (2008) Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem 283:16309–16319

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne-Marie Postovit.

Additional information

Summary

Classically, the influence of the tumor microenvironment on the regulation of cellular phenotype has been assessed principally in terms of changes in gene expression at the level of transcription. Here, we detail evidence of an integrated response that also involves control of alternative splicing and protein translation, collectively contributing to tumor progression.

Michael Jewer and Scott D. Findlay are co-first authors.

Michael Jewer, Scott D Findlay, and Lynne-Marie Postovit all agree to submit this article to the Journal of Cell Communication and Signaling.

This work was supported by the Canadian Institutes for Health Research (MOP 89714, MOP 119589, and PLS 95381) and the Cancer Research Society to L.-M. Postovit. S.D. Findlay is the recipient of a scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC). M. Jewer is the recipient of a Canadian Institutes of Health Research (CIHR) scholarship. L.-M. Postovit is the recipient of the Premier New Investigator Award from the CIHR.

The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jewer, M., Findlay, S.D. & Postovit, LM. Post-transcriptional regulation in cancer progression. J. Cell Commun. Signal. 6, 233–248 (2012). https://doi.org/10.1007/s12079-012-0179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-012-0179-x

Keywords

Navigation