Skip to main content
Log in

A Bisensory Method for Odor and Irritation Detection of Formaldehyde and Pyridine

  • Published:
Chemosensory Perception

Abstract

A bisensory method was developed for determining the psychometric functions and absolute thresholds for odor and sensory irritation of two odorous irritants. Individual and group thresholds for formaldehyde or pyridine were measured for 31 age-matched subjects (18–35 years old). P 50 absolute thresholds were for formaldehyde odor 110 ppb (range 23–505), for pyridine odor 77 ppb (range 20–613), and for pyridine irritation 620 ppb (range 90–3,656); too few subjects’ formaldehyde irritation thresholds were possible to determine (human exposures limited to 1 ppm). In spite of large interindividual differences, all thresholds for irritation were higher than for odor. The average slopes of the 62 psychometric functions for odor and the 32 possible for sensory irritation were highest for formaldehyde odor (83% per log ppb) and equal for pyridine odor and irritation (68% per log ppb). The bisensory method for measuring odor and sensory irritation jointly produced detection functions and absolute thresholds compatible with those earlier published; however, a steeper slope for sensory irritation than odor was expected for pyridine. The bisensory method is intended for measuring odor and sensory irritation to broadband mixtures and dynamic exposures, like indoor air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The perceptual word sensory irritation is used in this text because it translates best to the Swedish word ‘sensorisk irritation’ used in the present experiments. References cited have sometimes used other concepts in their research, for example ‘nasal pungency’ but ‘eye irritation’, ‘ocular irritation’ and ‘skin irritation’. Some have replaced ‘nasal pungency’ with ‘nasal irritation’. The authors prefer ‘chemesthesis’ or ‘trigeminal chemosensory system’ (supplementary to ‘olfaction’) to the much broader term ‘somatosensory system’, which is frequently used, for example, in pain research.

References

  • Abraham MH, Andonian-Haftan J, Cometto-Muñiz JE, Cain WS (1996) An analysis of nasal irritation thresholds using a new solvation equation. Fundam Appl Toxicol 31(1):71–76

    Article  CAS  Google Scholar 

  • Abraham MH, Kumarsingh R, Cometto-Muñiz JE, Cain WS (1998) An algorithm for nasal pungency thresholds in man. Arch Toxicol 72(4):227–232

    Article  CAS  Google Scholar 

  • Abraham MH, Hassanisade M, Jalai-Heravi M, Ghafourian T, Cain WS, Cometto-Muñiz E (2003) Draize rabit eye test compatibility with eye irritation thresholds in humans: a quantitative structure–activity relationship analysis. Toxicol Sci 76(2):384–391

    Article  CAS  Google Scholar 

  • Abraham MH, Sánchez-Moreno R, Cometto-Muñiz JE, Cain WS (2007) A quantitative structure–activity analysis on the relative sensitivity of the olfactory and the nasal trigeminal chemosensory systems. Chem Senses 32(7):711–719

    Article  CAS  Google Scholar 

  • Ahlström R, Berglund B, Berglund U, Lindvall T (1986) Formaldehyde odor and its interaction with the air of a sick building. Environ Int 12(1–4):289–295

    Article  Google Scholar 

  • Ahlström R, Berglund B, Berglund U, Engen T, Lindvall T (1987) A comparison of odor perception in smokers, non-smokers and passive smokers. Am J Otolaryngol 8(1):1–6

    Article  Google Scholar 

  • Amoore JE (1991) Specific anosmia. In: Getchell TV, Bartoshuk LM, Doty RL, Snow JB Jr (eds) Smell and taste in health and disease. Raven, New York, p 655

    Google Scholar 

  • Andersen I, Lundqvist GR, Mølhave L (1975) Indoor-air pollution due to chipboard used as a construction material. Atmos Environ 9(12):1121–1127

    Article  CAS  Google Scholar 

  • Baird JC, Berglund B, Berglund U, Lindvall T (1990) Symptom patterns as an early warning signal of community health. Environ Int 16(1):3–9

    Article  Google Scholar 

  • Baird JC, Berglund B, Shams Esfandabad H (1994) Longitudinal assessment of sensory reactions in eyes and upper airways of staff in a sick building. Environ Int 20(2):141–160

    Article  Google Scholar 

  • Berglund B (1991) Quality assurance in environmental psychophysics. In: Bolanowski SJ, Gescheider GA (eds) Ratio scaling of psychological magnitudes—in honor of the memory of S.S. Stevens. Erlbaum, Hillsdale, pp 140–162

    Google Scholar 

  • Berglund B (2011) Measurement in psychology. In: Berglund B, Rossi RB, Townsend JT, Pendrill LR (eds) Measurement with persons. Theory, methods and implementation areas. Taylor & Francis, New York, pp 27–50

    Google Scholar 

  • Berglund B, Nordin S (1992) Detectability and perceived intensity for formaldehyde odor in smokers and non-smokers. Chem Senses 17(3):291–306

    Article  CAS  Google Scholar 

  • Berglund B, Berglund U, Lindvall T (1974) Measurement of rapid changes of odor concentration by a signal detection approach. J Air Poll Contr Ass 24:162–164

    Article  Google Scholar 

  • Berglund B, Berglund U, Lindvall T, Nicander-Bredberg H (1982) Olfactory and chemical characterization of indoor air. Towards a psychophysical model for air quality. Environ Int 8(1–6):327–332

    Article  CAS  Google Scholar 

  • Berglund B, Berglund U, Johansson I, Lindvall T (1986) Research equipment for sensory air quality studies of nonindustrial environments. Environ Int 12(1–4):189–194

    Article  CAS  Google Scholar 

  • Berglund B, Berglund U, Lindvall T (1988a) Quality assurance in olfactometry. In: Nielsen VC, Voorburg JH, Hermite PL (eds) Volatile emissions from livestock farming and sewage operations. Elsevier, London, pp 12–25

    Google Scholar 

  • Berglund B, Högman L, Johansson I (1988b) Reliability of odor measurements near threshold. Reports from the Department of Psychology, University of Stockholm, No. 682

  • Cain WS (1976) Olfaction and the common chemical sense: some psychophysical contrasts. Sensory Proc 1(1):57–67

    CAS  Google Scholar 

  • Cain WS, Gent JF (1991) Olfactory sensitivity: reliability, generality, and association with aging. J Exp Psychol Hum Percept Perform 17(2):382–391

    Article  CAS  Google Scholar 

  • Cain WS, Murphy CL (1980) Interaction between chemoreceptive modalities of odor and irritation. Nature 284(5753):255–257

    Article  CAS  Google Scholar 

  • Cain WS, Schmidt R (2009) Can we trust odor databases? Example of t- and n-butyl acetate. Atmos Environ 43(91):2591–2601

    Article  CAS  Google Scholar 

  • Cain WS, See L-C, Tosun T (1986) Irritation and odor from formaldehyde: chamber studies. In: IAQ ’86: managing indoor air for health and energy conservation (pp. 126–137). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta

  • Cain WS, Leaderer BP, Cannon L, Tosun T, Ismail H (1987) Odorization of inert gas for occupational safety: psychophysical considerations. Am Ind Hyg Ass J 48(1):47–55

    Article  CAS  Google Scholar 

  • Cain WS, de Wijk RA, Jalowayski AA, Pilla Caminha G, Schmidt R (2005) Odor and chemesthesis from brief exposures to TXIB. Indoor Air 15(6):445–457

    Article  CAS  Google Scholar 

  • Cain WS, Schmidt R, Jalowayski AA (2007) Odor and chemesthesis from exposures to glutaraldehyde vapor. Int Arch Occup Environ Health 80(8):721–731

    Article  CAS  Google Scholar 

  • Cain WS, Dourson ML, Kohrmann-Vincent MJ, Allen BC (2010) Human chemosensory perception of methyl isothiocyanate: chemesthesis and odor. Regul Toxicol Pharmacol 58(2):173–180

    Article  CAS  Google Scholar 

  • Cometto-Muñiz JE, Cain WS (1990) Thresholds for odor and nasal pungency. Physiol Behav 48(5):719–725

    Article  Google Scholar 

  • Cometto-Muñiz JE, Cain WS (1991) Influence of airborne contaminants on olfaction and the common chemical sense. In: Getchell TV, Bartoshuk LM, Doty RL, Snow JB Jr (eds) Smell and taste in health and disease. Raven, New York, p 287

    Google Scholar 

  • Cometto-Muñiz JE, Cain WS (1998) Trigeminal and olfactory sensitivity: comparison of modalities and methods of measurement. Int Ach Occup Environ Health 71(2):105–110

    Article  Google Scholar 

  • Cullen MR (1987) The worker with multiple chemical sensitivities: an overview. Occup Med 2(4):655–661

    CAS  Google Scholar 

  • Dalton PH, Wysocki CJ, Brody MJ, Lawley HJ (1997) Perceived odor, irritation, and health symptoms following short-term exposure to acetone. Am J Ind Med 31(5):558–569

    Article  CAS  Google Scholar 

  • Dalton PH, Dilks DD, Banton MI (2000) Evaluation of odor and sensory irritation thresholds for methyl isobutyl ketone in humans. Am Ind Hyg Ass J 61(3):340–350

    CAS  Google Scholar 

  • Dunn JD, Cometto-Muñiz JE, Cain WS (1982) Nasal reflexes: reduced sensitivity to CO2 irritation in cigarette smokers. J Appl Toxicol 2(3):176–178

    Article  CAS  Google Scholar 

  • Engen T (1971) Psychophysics I. Discrimination and detection. In: Kling GW, Riggs LA (eds) Woodworth and Schlossberg’s experimental psychology. Holt, New York, p 11

    Google Scholar 

  • Engen T (1986) Perception of odor and irritation. Environ Int 12(1–4):177–187

    Article  Google Scholar 

  • Engen T (1987) Remembering odors and their names. Am Scient 75(5):497–503

    Google Scholar 

  • Grundvig JL, Dustman RE, Beck EC (1967) The relationship of olfactory receptor stimulation to stimulus–environmental temperature. Exp Neurol 18(4):416–428

    Article  CAS  Google Scholar 

  • Kobal G, Hummel T (1991) Olfactory evoked potentials in humans. In: Getchell TV, Bartoshuk LM, Doty RL, Snow JB Jr (eds) Smell and taste in health and disease. Raven, New York, p 255

    Google Scholar 

  • Kobal G, van Toller S, Hummel T (1989) Is there directional smelling? Experientia 45(2):130–132

    Article  CAS  Google Scholar 

  • Kunkler PE, Ballard CJ, Oxford GS, Hurley JH (2011) TRPA1 receptors mediate environmental irritation-induced meningeal vasodilatation. Pain 152(1):38–44

    Article  CAS  Google Scholar 

  • Lang I, Bruckner T, Triebig G (2008) Formaldehyde and chemosensory irritation in humans: a controlled human exposure study. Regul Toxicol Pharmacol 50(1):23–36

    Article  CAS  Google Scholar 

  • Nagata Y (2003) Odor intensity and odor threshold value. J Japan Air Clean Assoc 41(2):17–25

    Google Scholar 

  • Noma E, Berglund B, Berglund U, Johansson I, Baird JC (1988) Joint spatial representation of chemicals and locations in a healthy and sick preschool. Atmos Environ 22(3):451–460

    Article  CAS  Google Scholar 

  • Nordin S, Almqvist O, Berglund B (2011) Odor detectability is not impaired in successfully-aged elderly. Chemosens Percept (This issue)

  • Schemper T, Voss S, Cain WS (1981) Odor identification in young and elderly persons: sensory and cognitive limitations. J Gerontol 36(4):446–452

    CAS  Google Scholar 

  • Schneider RA, Schmidt CE (1967) Dependency of olfactory localization on non-olfactory cues. Physiol Behav 2(3):305–309

    Article  Google Scholar 

  • Shams Esfandabad H (1993) Perceptual analysis of odorous irritants in indoor air. Doctoral dissertation. Stockholm University, Stockholm

    Google Scholar 

  • Stevens JC, Plantinga A, Cain WS (1982) Reduction of odor and nasal pungency associated with aging. Neurobiol Aging 3(2):125–132

    Article  CAS  Google Scholar 

  • Stevens JC, Cain WS, Burke R (1988) Variability of olfactory thresholds. Chem Senses 13(4):643–653

    Article  CAS  Google Scholar 

  • Stevens JC, Cain WS, Schiet FT, Oatley MW (1989) Olfactory adaptation and recovery in old age. Perception 18(2):265–276

    Article  CAS  Google Scholar 

  • WHO (1989) Formaldehyde. Environmental health criteria 89. World Health Organization, Geneva

  • Wolkoff P, Nielsen GD (2010) Non-cancer effects of formaldehyde and relevance for setting an indoor air guideline. Environ Int 36(7):788–799

    Article  CAS  Google Scholar 

  • Wolkoff P, Wilkins CK, Clausen PA, Nielsen GD (2006) Organic compounds in office environments—sensory irritation, odor, measurements and the role of reactive chemistry. Indoor Air 16(1):7–19

    Article  CAS  Google Scholar 

  • Wysocki CJ, Green BG, Malia TP (1992) Monorhinal stimulation as a method for differentiating between thresholds for odor and irritation. Chem Senses 17(5):722–723

    Google Scholar 

  • Wysocki CJ, Dalton P, Brody MJ, Lawley HJ (1997) Acetone odor and irritation thresholds obtained from acetone-exposed factory workers and from control (occupationally non-exposed) subjects. Am Ind Hyg Assoc J 58(10):704–712

    Article  CAS  Google Scholar 

  • Zheng L (2010) Intensity of odor and sensory irritation as a function of hexanal concentration and interpresentation intervals: an exploratory study. Percept Mot Skills 111(1):210–228

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by research grants from the Swedish Research Council FORMAS and the EU FP6 Coordination Action MINET–Measuring the Impossible. The authors appreciate greatly Dr. Ingegerd Johansson’s contributions to the development of the olfactometry and the instrumentation for chemical measurement used in the present experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitta Berglund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berglund, B., Höglund, A. & Esfandabad, H.S. A Bisensory Method for Odor and Irritation Detection of Formaldehyde and Pyridine. Chem. Percept. 5, 146–157 (2012). https://doi.org/10.1007/s12078-011-9101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-011-9101-9

Keywords

Navigation