Skip to main content
Log in

Retronasal and Oral-Cavity-Only Identifications of Air-Phase Trigeminal Stimuli

  • Published:
Chemosensory Perception

Abstract

Oral-cavity-only (OCO) identifications of air-phase trigeminal stimulus chemicals, i.e., pure chemicals that are often discriminated from their solvents by anosmics and are usually lateralized without sniffing by normosmics, were compared with retronasal identifications made by 20 participants. Participants selected the best possible identification from nine alternatives, but did not respond if they could not provide an identification within the 10-s response interval. It was found that, except for dl-menthol, the frequencies of correct identifications for OCO presentations were significantly different from the frequencies for retronasal presentations. OCO percent correct identifications were: eugenol 7%, heptyl alcohol 5%, nonanal 10%, 1-octanal 18%, and valeric acid 20%, but 58% correct for dl-menthol. Median percent correct OCO identifications were all 0% except 67% for dl-menthol. Modal OCO identification responses were ‘no response’, except “peppermint” for dl-menthol. In contrast, retronasal overall percent correct identifications, median percent correct identifications, and modal identifications were: eugenol 78%, 100%, “cloves”; heptyl alcohol 49%, 67%, “cleaner”; nonanal 54%, 58%, “citrus”; 1-octanal 71%, 67%, “cleaner”; dl-menthol 80%, 100%, “peppermint”; valeric acid 66%, 67%, “rancid”. One implication of the differences between OCO and retronasal responses is that, for many trigeminal stimuli at retronasal-effective concentrations, responses from the oral cavity trigeminal sensory system are not sufficient for identification, suggesting that the oral cavity trigeminal system may be different from and generally provides less differential information than the nasal cavity one. However, because dl-menthol received consistent oral cavity identifications comparable to retronasal identifications, this ten-carbon alcohol may represent a unique class of trigeminal stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

df :

Degrees of freedom

ID:

Identification

OCO:

Oral-cavity-only

ODC:

Odorant delivery container

SIR:

Semi-interquartile range

TRPM8:

Transient receptor potential melastatine family 8

References

  • Atkinson RC, Herrnstein RJ, Lindzey G, Luce RD (1988) Stevens’ handbook of experimental psychology, volume 2: learning and cognition, 2nd edn. Wiley, New York

    Google Scholar 

  • Bandell M, Macpherson LJ, Papapoutian A (2007) From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Curr Opin Neurobiol 17:490–497

    Article  CAS  Google Scholar 

  • Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt S-E, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–209

    Article  CAS  Google Scholar 

  • Bautista DM, Sigal YM, Milstein AD, Garrison JL, Zorn JA, Tsuruda PR, Nicoll RA, Julius D (2008) Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat Neurosci 11:772–779

    Article  CAS  Google Scholar 

  • Bereiter DA, Hargreaves KM, Hu JW (2008) Trigeminal mechanisms of nociception: peripheral and brainstem organization. In: Bushnell MC, Basbaum AI (eds) The senses. volume 5, pain. Elsevier, Amsterdam, pp 435–460

    Chapter  Google Scholar 

  • Boyle JA, Lundström JN, Knecht M, Jones-Gotman M, Schaal B, Hummel T (2006) On the trigeminal percept of androstenone and its implications on the rate of specific anosmia. J Neurobiol 66:1501–1510

    Article  CAS  Google Scholar 

  • Brauchli P, Rüegg PB, Etzweiler F, Zeier H (1995) Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chem Senses 20:505–515

    Article  CAS  Google Scholar 

  • Bryant B, Silver WL (2000) Chemesthesis: the common chemical sense. In: Finger TE, Silver WL, Restrepo D (eds) The neurobiology of taste and smell. Wiley-Liss, New York, pp 73–100

    Google Scholar 

  • Cain WS (1976) Olfaction and the common chemical sense: some psychophysical contrasts. Sens Process 1:57–67

    CAS  Google Scholar 

  • Cain WS (1988) Olfaction. In: Atkinson RC, Herrnstein RJ, Lindzey G, Luce RD (eds) Stevens’ handbook of experimental psychology, 2nd ed. volume 1, perception and motivation. Wiley, New York, pp 409–459

    Google Scholar 

  • Cain WS (1990) Perceptual characteristics of nasal irritation. In: Green BG, Mason JR, Kare MR (eds) Chemical senses, volume 2, irritation. Marcel Dekker, New York,, pp 43–60

    Google Scholar 

  • Cain WS, Wijk RA, Jalowayski AA, Pilla Caminha G, Schmidt R (2005) Odor and chemesthesis from brief exposures to TXIB. Indoor Air 15:445–457

    Article  CAS  Google Scholar 

  • Cain WS, Lee N-S, Wise PM, Schmidt R, Ahn B-H, Cometto-Muñiz JE, Abraham MH (2006) Chemesthesis from volatile organic compounds: psychophysical and neural responses. Physiol Behav 88:317–324

    Article  CAS  Google Scholar 

  • Chen V, Halpern BP (2008) Retronasal but not oral-cavity-only identification of “purely olfactory” odorants. Chem Senses 33:107–118

    Article  CAS  Google Scholar 

  • Calixto JB, Kassuya CAL, André E, Ferreira J (2005) Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol Ther 106:179–208

    Article  CAS  Google Scholar 

  • Collins LMC, Dawes C (1987) The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res 66(8):1300–1302

    CAS  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham MH (1998) Nasal pungency and odor of homologous aldehydes and carboxylic acids. Exp Brain Res 118:180–188

    Article  Google Scholar 

  • Cometto-Muñiz JE, Cain WS, Abraham M (2005) Determinants for nasal trigeminal detection of volatile organic compounds. Chem Senses 30:627–642

    Article  CAS  Google Scholar 

  • Dalton P (2002) Olfaction. In: Yantis S, Pashler H (eds) Stevens’ handbook of experimental psychology, 3d edition, volume 1. Sensation and perception. Wiley, New York, pp 691–746

    Google Scholar 

  • Dewis ML (2005) Molecules of taste and sensation. In: Rowe DJ (ed) Chemistry and technology of flavors and fragrances. Blackwell, Oxford, pp 199–243

    Google Scholar 

  • Dorries KM, Adkins-Regan E, Halpern BP (1995) Olfactory sensitivity to the pheromone, androstenone, is sexually dimorphic in the pig. Physiol Behav 57:255–259

    Article  CAS  Google Scholar 

  • Dorries KM, Adkins-Regan E, Halpern BP (1997) Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pig. Brain Behav Evol 49:53–62

    Article  CAS  Google Scholar 

  • Doty RL, Cometto-Muñiz JE, Brugger WE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiol Behav 20:175–185

    Article  CAS  Google Scholar 

  • Dragich AM, Halpern BP (2008) An oral cavity component in retronasal smelling of natural extracts. Physiol Behav 93:521–528

    Article  CAS  Google Scholar 

  • Finger TE, Silver WL, Bryant B (2004) Trigeminal nerve. In: Aldeman G & Smith BH (eds) Encyclopedia of Neuroscience, 3d Edition, Elsevier. CD version

  • Flexner SB (1987) The Random House dictionary of the English language, 2nd edn. Random House, New York

    Google Scholar 

  • Frasnelli J, Hummel T (2005) Intranasal trigeminal thresholds in healthy subjects. Environ Toxicol Pharmacol 19(3):575–580

    Article  CAS  Google Scholar 

  • Green BG (1996) Chemesthesis: pungency as a component of flavor. Trends Food Sci Technol 7(12):415–420

    Article  CAS  Google Scholar 

  • Green BG, Lawless HT (1991) The psychophysics of somatosensory chemoreception in the nose and mouth. In: Getchell TV, Doty RL, Bartoshuk LM, Snow JB (eds) Smell and taste in health and disease. Raven, New York, pp 235–253

    Google Scholar 

  • Green BG, Alvarez-Reeves M, George P, Akirav C (2005) Chemesthesis and taste: evidence of independent processing of sensation intensity. Physiol Behav 86(4):526–537

    Article  CAS  Google Scholar 

  • Gulbransen BD, Clapp TR, Finger TE, Kinnamon SC (2008) Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J Neurophysiol 99:2929–2937

    Article  Google Scholar 

  • Halpern BP (1986) Constraints imposed on taste physiology by human taste reaction time data. Neurosci Biobehav Rev 10:135–151

    Article  CAS  Google Scholar 

  • Halpern BP (2008a) Mechanisms and consequences of retronasal smelling: computational fluid dynamic observations and psychophysical measures. ChemoSense 10(3):1–8

    Google Scholar 

  • Halpern BP (2008b) Retronasal olfaction. In: Squire LR (ed) Sensory systems. Chemical senses. Olfaction. Encyclopedia of neuroscience. Academic Press, Oxford (on-line), pp 297–304

    Google Scholar 

  • Heilmann S, Hummel T (2004) A new method for comparing orthonasal and retronasal olfaction. Behav Neurosci 118:412–419

    Article  Google Scholar 

  • Hornung DE, Kurtz D, Youngentob SL (1993) Can anosmic patients separate trigeminal and non-tngeminal stimulants. Chem Senses 18:573 (abstract)

    Google Scholar 

  • Hornung DE, Kurtz D, Youngentob SL (1994) Anosmic patients can separate trigeminal and nontrigeminal stimulants. In: Kurihara K, Suzuki N, Ogawa H (eds) Olfaction and taste XI. Springer, Tokyo, p 635

    Google Scholar 

  • Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T (2006) Visualization of flow resistance in physiological nasal respiration. Arch Otolaryngol Head Neck Surg 132:1203–1209

    Article  Google Scholar 

  • Jacob S, Kinnunen LH, Metz J, Cooper M, McClintock MK (2001) Sustained human chemosignal unconsciously alters brain function. Neuroreport 12(11):2391–2394

    Article  CAS  Google Scholar 

  • Kaur P, Maman P, Sandhu JS (2008) Auditory and visual reaction time in athletes, healthy controls, and patients of type 1 diabetes mellitus: a comparative study. International Journal of Diabetes in Developing Countries 26:112–115

    Google Scholar 

  • Kobal G, Hummel T (1992) Olfactory evoked potential activity and hedonics. In: Van Toller S, Dodd GH (eds) Fragrance: the psychology and biology of perfume. Elsevier, London, pp 175–194

    Google Scholar 

  • Kobal G, Van Toller S, Hummel T (1989) Is there directional smelling. Cell Mol Life Sci 45:130–132

    Article  CAS  Google Scholar 

  • Laing DG, MacLeod P (1992) Reaction time for the recognition of odor quality. Chem Senses 17:337–346

    Article  CAS  Google Scholar 

  • Laing DG, Legha PK, Jinks AL, Hutchinson I (2003) Relationship between molecular structure, concentration and odor qualities of oxygenated aliphatic molecules. Chem Senses 28:57–69

    Article  CAS  Google Scholar 

  • Laska M, Distel H, Hudson R (1997) Trigeminal perception of odorant quality in congenitally anosmic subjects. Chem Senses 22:447–456

    Article  CAS  Google Scholar 

  • Lin W, Ogura T, Margulskee RF, Finger TE, Restrepo D (2008) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99:1451–1460

    Article  CAS  Google Scholar 

  • Lundström JN, Hummel T (2006) Sex-specific hemispheric differences in cortical activation to a bimodal odor. Behav Brain Res 166(2):197–203

    Article  Google Scholar 

  • Lundström JN, Frasnelli J, Larsson M, Hummel T (2005) Sex differentiated responses to intranasal trigeminal stimuli. Int J Psychophysiol 57(3):181–186

    Article  Google Scholar 

  • Mahajan SS, Goddik L, Qian MC (2004) Aroma compounds in sweet whey powder. J Dairy Sci 87:4057–4063

    Article  CAS  Google Scholar 

  • Mainland J, Sobel N (2006) The sniff is part of the olfactory percept. Chem Senses 31:181–196

    Article  Google Scholar 

  • Mälkiä A, Madrid R, Meseguer V, de la Peña E, Valero M, Belmonte C, Viana F (2007) Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. The J Physiol 581(1):155–174

    Article  CAS  Google Scholar 

  • McEwen DP, Jenkins PM, Martens JR (2008) Olfactory cilia: our direct neuronal connection to the external world. Curr Top Dev Biol 85:333–370

    Article  CAS  Google Scholar 

  • Murphy C (1983) Age-related effects on the threshold, psychophysical function, and pleasantness of menthol. J Geron 38:217–222

    CAS  Google Scholar 

  • Olofsson JK, Broman DA, Gilbert PE, Dean P, Nordin S, Murphy C (2006) Laterality of the olfactory event-related potential response. Chem Senses 31:699–704

    Article  Google Scholar 

  • O’Neil MJ (2006) The Merck Index. Merck, Whitehouse Station, p 665, 806, 1008, 1702

    Google Scholar 

  • Parikh VP (2007) Retronasal but not oral-cavity identifications of air-phase trigeminal stimuli. Biological Science Honors Thesis, Cornell University. Available from http://ecommons.library.cornell.edu/handle/1813/7855. Accessed September 23, 2008.

  • Parikh V, Lee-Lim AP, Halpern BP (2007) Retronasal and oral-cavity identification of trigeminal odorants. Chemical Senses, 32 (6), A47 (abstract). Available from http://chemse.oxfordjournals.org/cgi/reprint/32/6/A1?etoc. Accessed January 27, 2009.

  • Radil T, Wysocki CJ (1998) Spatiotemporal masking in pure olfaction. Proc Natl Acad Sci U S A 855:641–644

    CAS  Google Scholar 

  • Riggs LA (1971) Vision. In: Kling JW, Riggs LA (eds) Woodworth and Schlosberg’s experimental psychology, 3rd edn. Holt, Rinehart and Winston, New York, pp 273–314

    Google Scholar 

  • Triller A, Boulden EA, Churchill A, Hatt H, England J, Spehr M, Sell CS (2008) Odorant–receptor interactions and odor percept: a chemical perspective. Chemistry and Biodiversity 5:862–886

    Article  CAS  Google Scholar 

  • Sand T, Zhitniy N, White LR, Stovner LJ (2008) Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin Neurophysiol 119:1020–1027

    Article  Google Scholar 

  • Savic I, Berglund H (2000) Right-nostril dominance in discrimination of unfamiliar, but not familiar, odours. Chem Senses 25:517–523

    Article  CAS  Google Scholar 

  • Shusterman D, Hummel T, Bautista D, Silver W, Wise P (2008) Nasal trigeminal function: qualitative, quantitative and temporal effects. Chem Senses 33:S31 (abstract)

    Google Scholar 

  • Silver WL, Roe P, Atukorale V, Li W, Xiang B-S (2008) TRP channels and chemosensation. ChemoSense 10(1):4–6

    Google Scholar 

  • Simons CT, Carstens E (2008) Oral chemesthesis and taste. In: Firestein S, Beauchamp GK (eds) The senses, volume 4. Olfaction and taste. Elsevier, Amsterdam, pp 345–369

    Chapter  Google Scholar 

  • Small DM, Gerber JC, Erica YE, Hummel T (2005) Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans. Neuron 47:593–605

    Article  CAS  Google Scholar 

  • Stephenson D, Halpern BP (2009) No oral-cavity-only discrimination of purely olfactory odorants. Chem Senses 34:121–126

    Article  Google Scholar 

  • Sun BC, Halpern BP (2005) Identification of air-phase retronasal and orthonasal odorant pairs. Chem Senses 30:1–14

    Article  Google Scholar 

  • The Roast of the Town. http://www.stagecoachcoffeeroasters.com/index.php?cat_id=81&nav_tree=81. Accessed January 27, 2009.

  • Voirol E, Daget N (1986) Comparative study of nasal and retronasal olfactory perception. Food Sci Technol 19:316–319

    Google Scholar 

  • Wang L, Walker VE, Sardi H, Fraser C, Jacob TJC (2002) The correlation between physiological and psychological responses to odour stimulation in human subjects. Clin Neurophysiol 113:542–551

    Article  Google Scholar 

  • Wine Spectator (2009) Wine Spectator online glossary. Available from http://www.winespectator.com/Wine/Wine_Basics/Glossary_Results?inits=P. Accessed January 27, 2009.

  • Woodworth RS, Schlosberg H (1956) Experimental psychology, revised edition. Holt, New York

    Google Scholar 

  • Wysocki CJ, Wise P (2004) Methods, approaches, and caveats for functionally evaluating olfaction and chemesthesis. In: Deibler KD, Delwiche J (eds) Handbook of flavor characterization. Sensory analysis, chemistry, and physiology. Marcel Dekker, New York, pp 1–40

    Google Scholar 

  • Wysocki CJ, Cowart BJ, Radil T (2003) Nasal trigeminal chemosensitivity across the adult life span. Perception and Psychophysics 65:115–122

    Google Scholar 

  • Zhao K, Dalton P, Yang GC, Scherer PW (2006) Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chem Senses 31:107–118

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Cornell Institute of Food Science Summer Scholars Program, USDA Hatch NYC-191403, the Biological Sciences Honors Program, and a Susan Linn Sage Professorship. Thomas A. Cleland provided comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce P. Halpern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parikh, V., Lee-Lim, A.P. & Halpern, B.P. Retronasal and Oral-Cavity-Only Identifications of Air-Phase Trigeminal Stimuli. Chem. Percept. 2, 9–24 (2009). https://doi.org/10.1007/s12078-009-9038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-009-9038-4

Keywords

Navigation