Skip to main content

Advertisement

Log in

Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background

Primary liver cancer has high mortality and morbidity worldwide. However, the characteristic of gut microbiota profile and its correlation with inflammation status in liver cancer patients remains largely unknown, and a gut microbiome-based diagnostic model for liver cancer is still absent.

Methods

Here, we provided a comprehensive analysis based on fecal 16S rRNA sequencing and clinical data in a cohort consisting of 40 healthy volunteers, 143 hepatocellular carcinoma (HCC) patients, and 46 cholangiocarcinoma (CCA) patients.

Results

Our results indicated a distinct shift of gut microbiota composition between two primary liver cancer types and compared with healthy volunteers. Based on the diversity constitute of gut microbiome taxonomy and random forest algorithm, eight genera with mean abundance above 0.1% were selected to construct the classification model with half of the randomly selected cohort. Based on this signature, high diagnostic accuracy in the validation cohort to classify liver cancer types (AUC = 0.989, 0.967, 0.920 for Control, HCC, CCA separately) was achieved. Further analysis showed increased Gram-negative bacteria and elevated inflammatory response markers in CCA group versus HCC group. The correlation analysis between inflammatory response markers and composition of gut microbiome revealed decreased potentially beneficial genus and increased opportunistic pathogens positively correlated with adverse prognostic inflammatory response markers.

Conclusion

Generally, our study established the gut microbiome-based signature for liver cancer prediction and screening and revealed that gut microbiome characteristic in primary liver cancer was correlated with adverse inflammatory response markers in liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data used to support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

HCC:

Hepatocellular carcinoma

CCA:

Cholangiocarcinoma

CIOMS:

Council for international organizations of medical sciences

NCCN:

National comprehensive cancer network

DADA2:

Divisive amplicon denoising algorithm 2

OTU:

Operating taxonomic unit

LEfSe:

Linear discriminant analysis effect size

STAMP:

Statistical analysis of metagenomics profile

PCoA:

Principal coordinate analysis

NMDS:

Non-metric multidimensional scaling

ANOVA:

Analysis of variance

ROC:

Receiver operating characteristic

RDA:

Redundancy analysis

NLR:

Neutrophil-to-lymphocyte ratio

LMR:

Lymphocyte-to-monocyte ratio

PLR:

Platelet-to-lymphocyte ratio

LPS:

Lipopolysaccharides

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians 71, 209–249, doi:https://doi.org/10.3322/caac.21660 (2021).

  2. Zheng, R. et al. Liver cancer incidence and mortality in China: Temporal trends and projections to 2030. Chinese journal of cancer research = Chung-kuo yen cheng yen chiu 30, 571–579, doi:https://doi.org/10.21147/j.issn.1000-9604.2018.06.01 (2018).

  3. Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152:745–761. https://doi.org/10.1053/j.gastro.2016.11.048

    Article  CAS  PubMed  Google Scholar 

  4. Liu CY, Chen KF, Chen PJ. Treatment of liver cancer. Cold Spring Harb Perspect Med. 2015;5: a021535. https://doi.org/10.1101/cshperspect.a021535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeng H, et al. Cancer survival in China, 2003–2005: a population-based study. Int J Cancer. 2015;136:1921–1930. https://doi.org/10.1002/ijc.29227

    Article  CAS  PubMed  Google Scholar 

  6. Yang, J. & Heimbach, J. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ (Clinical research ed.) 371, m3544, doi:https://doi.org/10.1136/bmj.m3544 (2020).

  7. Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut. 2016;65:2035–2044. https://doi.org/10.1136/gutjnl-2016-312729

    Article  CAS  PubMed  Google Scholar 

  8. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279:70–89. https://doi.org/10.1111/imr.12567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Benakis C, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med. 2016;22:516–523. https://doi.org/10.1038/nm.4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qin J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. https://doi.org/10.1038/nature11450

    Article  CAS  PubMed  Google Scholar 

  11. Yu J, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70–78. https://doi.org/10.1136/gutjnl-2015-309800

    Article  CAS  PubMed  Google Scholar 

  12. Zheng Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes. 2020;11:1030–1042. https://doi.org/10.1080/19490976.2020.1737487

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jones RM, Neish AS. Gut Microbiota in Intestinal and Liver Disease. Annu Rev Pathol. 2021;16:251–275. https://doi.org/10.1146/annurev-pathol-030320-095722

    Article  CAS  PubMed  Google Scholar 

  14. Tripathi A, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15:397–411. https://doi.org/10.1038/s41575-018-0011-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Man SM. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 2018;15:721–737. https://doi.org/10.1038/s41575-018-0054-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Logue JB, et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J. 2016;10:533–545. https://doi.org/10.1038/ismej.2015.131

    Article  CAS  PubMed  Google Scholar 

  17. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 17, 3, doi:https://doi.org/10.14806/ej.17.1.200 (2011)

  18. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England). 2011;27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  Google Scholar 

  19. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4: e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  20. Callahan BJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bolyen E, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Segata N, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics (Oxford, England). 2014;30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  Google Scholar 

  24. Ward, T. et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv, 133462, doi:https://doi.org/10.1101/133462 (2017).

  25. Ren Z, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 2019;68:1014–1023. https://doi.org/10.1136/gutjnl-2017-315084

    Article  CAS  PubMed  Google Scholar 

  26. Jia, X. et al. Characterization of Gut Microbiota, Bile Acid Metabolism, and Cytokines in Intrahepatic Cholangiocarcinoma. Hepatology (Baltimore, Md.) 71, 893–906, doi:https://doi.org/10.1002/hep.30852 (2020).

  27. Lu, H. et al. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microbial ecology 61, 693–703, doi:https://doi.org/10.1007/s00248-010-9801-8 (2011).

  28. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7:691–701. https://doi.org/10.1038/nrgastro.2010.172

    Article  PubMed  Google Scholar 

  29. Mariat D, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. https://doi.org/10.1186/1471-2180-9-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Magne, F. et al. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 12, doi:https://doi.org/10.3390/nu12051474 (2020).

  31. Grigor'eva, I. N. Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of personalized medicine 11, https://doi.org/10.3390/jpm11010013 (2020).

  32. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30:332–338. https://doi.org/10.1097/mog.0000000000000057

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731–16736. https://doi.org/10.1073/pnas.0804812105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Machiels K, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–1283. https://doi.org/10.1136/gutjnl-2013-304833

    Article  CAS  PubMed  Google Scholar 

  35. Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15:111–128. https://doi.org/10.1038/nrgastro.2017.119

    Article  CAS  PubMed  Google Scholar 

  36. Qin N, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64. https://doi.org/10.1038/nature13568

    Article  CAS  PubMed  Google Scholar 

  37. Shacter, E. & Weitzman, S. A. Chronic inflammation and cancer. Oncology (Williston Park, N.Y.) 16, 217–226, 229; discussion 230–212 (2002).

  38. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dapito DH, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21:504–516. https://doi.org/10.1016/j.ccr.2012.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, L. X. et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology (Baltimore, Md.) 52, 1322–1333, doi:https://doi.org/10.1002/hep.23845 (2010).

  41. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005;121:977–990. https://doi.org/10.1016/j.cell.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  42. Szabo, G., Dolganiuc, A. & Mandrekar, P. Pattern recognition receptors: a contemporary view on liver diseases. Hepatology (Baltimore, Md.) 44, 287–298, doi:https://doi.org/10.1002/hep.21308 (2006).

  43. Miyahara Y, Takashi S, Shimizu Y, Ohtsuka M. The prognostic impact of neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) in patients with distal bile duct cancer. World journal of surgical oncology. 2020;18:78. https://doi.org/10.1186/s12957-020-01847-2

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang C, et al. Comparison of the prognostic value of inflammation-based scores in early recurrent hepatocellular carcinoma after hepatectomy. Liver Int. 2020;40:229–239. https://doi.org/10.1111/liv.14281

    Article  PubMed  Google Scholar 

  45. Wei Y, et al. Alterations of gut microbiome in autoimmune hepatitis. Gut. 2020;69:569–577. https://doi.org/10.1136/gutjnl-2018-317836

    Article  CAS  PubMed  Google Scholar 

  46. Matera G, et al. Receptor recognition of and immune intracellular pathways for Veillonella parvula lipopolysaccharide. Clin Vaccine Immunol. 2009;16:1804–1809. https://doi.org/10.1128/cvi.00310-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lamping N, et al. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J Clin Investig. 1998;101:2065–2071. https://doi.org/10.1172/jci2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA. 1999;96:9833–9838. https://doi.org/10.1073/pnas.96.17.9833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pushalkar S, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8:403–416. https://doi.org/10.1158/2159-8290.cd-17-1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kosumi K, et al. The Amount of Bifidobacterium genus in colorectal carcinoma tissue in relation to tumor characteristics and clinical outcome. Am J Pathol. 2018;188:2839–2852. https://doi.org/10.1016/j.ajpath.2018.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81772628, 81703310, 82072685), the Research Foundation of National Health Commission of China- Major Medical and Health Technology Project for Zhejiang Province (WKJ-ZJ-1706).

Author information

Authors and Affiliations

Authors

Contributions

GC, YW and XLC conceptualized and designed the study. JLL, BJH, FTL, ZYC, performed the experiment and collected the data. TD, BC, JYZ performed the analysis. All authors contributed to results interpretation. ZHS, TZ, LMD verified the data. TD drafted the initial version of the manuscript. All authors critically reviewed many revisions of the manuscript and contributed important intellectual content. GC, YW and XLC had full access to all the data in the study and had responsibility for the integrity of the data, the accuracy of the analyses, and the final decision to submit the manuscript for publication.

Corresponding authors

Correspondence to Xiaolei Chen, Yi Wang or Gang Chen.

Ethics declarations

Conflict of interest

All authors declare that they do not have any competing interests.

Ethical approval

This study was approved by the Ethics Committee in Clinical Research of the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (Ref No.3030-074). Written informed consent was obtained from all participants on enrollment. All research was performed according to the declaration of Helsinki and international ethical guidelines for human biomedical research of the Council for International Organizations of Medical Sciences (CIOMS).

Clinical trails registration

Not applicable.

Plant reproducibility

Not applicable.

Animal research (ethics)

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Li, J., He, B. et al. Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer. Hepatol Int 16, 99–111 (2022). https://doi.org/10.1007/s12072-021-10279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-021-10279-3

Keywords

Navigation