Skip to main content
Log in

The role of neutrophils in innate immunity-driven nonalcoholic steatohepatitis: lessons learned and future promise

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

The enrichment of innate immune cells and the enhanced inflammation represent the hallmark of non-alcoholic steatohepatitis (NASH), the advanced subtype with a significantly increased risk of progression to end-stage liver diseases within the spectrum of non-alcoholic fatty liver disease. Neutrophils are traditionally recognized as key components in the innate immune system to defend against pathogens. Recently, a growing body of evidence supports neutrophils as emerging key player in mediating the transition from steatosis to NASH, which is largely inspired by the histological findings in human liver biopsy indicating the enhanced infiltration of neutrophils as one of the key histological features of NASH. In this review, we discuss data regarding histological perspectives of hepatic infiltration of neutrophils in NASH. We also highlight the pathophysiological role of neutrophils in promoting metabolic inflammation in the liver through the release of a vast array of granule proteins, the interaction with other pro-inflammatory immune cells, and the formation of neutrophil extracellular traps. Neutrophil granule proteins possess pleiotropic effects on regulating neutrophil biology and functions. A variety of granule proteins (including lipocalin-2, myeloperoxidase, proteinase 3, neutrophil elastase, etc.) produced by neutrophils enhance liver metabolic inflammation, thereby promoting NASH progression by mediating neutrophil-macrophage interaction. Therapeutically, pharmacological inhibitors targeting neutrophil granule proteins hold promise to combat NASH. In addition, this article also summarizes potentials of neutrophils and its derived various granule proteins for the accurate, even non-invasive diagnosis of NASH.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALD:

Alcoholic liver disease

CCL:

CC-chemokine ligand

CXCL:

CXC-chemokine ligand

CXCR:

CXC chemokine/motif receptor

DCs:

Dendritic cells

ECM:

Extracellular matrix

G-CSF:

Granulocyte colony stimulating factor

HSCs:

Hepatic stellate cells

IL-1α:

Interleukin-1α

LCN2:

Lipocalin-2

LPS:

Lipopolysaccharide

Ly6G:

Lymphocyte antigen 6 complex locus G6D

MCD:

Methionine- and choline-deficient

MPO:

Myeloperoxidase

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NE:

Neutrophil elastase

NET:

Neutrophil extracellular trap

NF-κB:

Nuclear factor-κB

NGAL:

Neutrophil gelatinase-related lipocalin

NK cells:

Natural killer cells

NKT cells:

Natural killer T cells

NLR:

Neutrophil-to-lymphocyte ratio

PR3:

Proteinase 3

ROS:

Reactive oxygen species

TLR:

Toll like receptor

References

  1. Stefan N, Haring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol 2019;7(4):313–324

    PubMed  Google Scholar 

  2. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018;15(1):11–20

    PubMed  Google Scholar 

  3. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018;24(7):908–922

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brunt EM, Kleiner DE, Wilson LA, Unalp A, Behling CE, Lavine JE, et al. Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): a histologic marker of advanced NAFLD-Clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology 2009;49(3):809–820

    PubMed  Google Scholar 

  5. Tajiri K, Shimizu Y, Tsuneyama K, Sugiyama T. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2009;21(6):673–680

    CAS  PubMed  Google Scholar 

  6. Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate Immunity and Inflammation in NAFLD/NASH. Dig Dis Sci 2016;61(5):1294–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai J, Zhang XJ, Li H. Role of innate immune signaling in non-alcoholic fatty liver disease. Trends Endocrinol Metab 2018;29(10):712–722

    CAS  PubMed  Google Scholar 

  8. Xu R, Huang H, Zhang Z, Wang FS. The role of neutrophils in the development of liver diseases. Cell Mol Immunol 2014;11(3):224–231

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science 2004;303(5663):1532–1535

    CAS  PubMed  Google Scholar 

  10. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 2012;30:459–489

    CAS  PubMed  Google Scholar 

  11. Eash KJ, Greenbaum AM, Gopalan PK, Link DC. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Investig 2010;120(7):2423–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 2011;12(11):1035–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim MH, Granick JL, Kwok C, Walker NJ, Borjesson DL, Curry FR, et al. Neutrophil survival and c-kit(+)-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution. Blood 2011;117(12):3343–3352

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology 2006;43(2 Suppl 1):S54–S62

    CAS  PubMed  Google Scholar 

  15. Haukeland JW, Damas JK, Konopski Z, Loberg EM, Haaland T, Goverud I, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol 2006;44(6):1167–1174

    CAS  PubMed  Google Scholar 

  16. Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol 2014;20(10):2515–2532

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Melhem A, Muhanna N, Bishara A, Alvarez CE, Ilan Y, Bishara T, et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 2006;45(1):60–71

    CAS  PubMed  Google Scholar 

  18. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006;130(2):435–452

    CAS  PubMed  Google Scholar 

  19. Sutti S, Jindal A, Locatelli I, Vacchiano M, Gigliotti L, Bozzola C, et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 2014;59(3):886–897

    CAS  PubMed  Google Scholar 

  20. Wolf MJ, Adili A, Piotrowitz K, Abdullah Z, Boege Y, Stemmer K, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 2014;26(4):549–564

    CAS  PubMed  Google Scholar 

  21. Ibrahim J, Nguyen AH, Rehman A, Ochi A, Jamal M, Graffeo CS, et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 2012;143(4):1061–1072

    CAS  PubMed  Google Scholar 

  22. Haas JT, Vonghia L, Mogilenko DA, Verrijken A, Molendi-Coste O, Fleury S, et al. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nat Metab 2019;1(6):604–614

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Henning JR, Graffeo CS, Rehman A, Fallon NC, Zambirinis CP, Ochi A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology 2013;58(2):589–602

    CAS  PubMed  Google Scholar 

  24. Sutti S, Locatelli I, Bruzzi S, Jindal A, Vacchiano M, Bozzola C, et al. CX3CR1-expressing inflammatory dendritic cells contribute to the progression of steatohepatitis. Clin Sci (Lond) 2015;129(9):797–808

    CAS  Google Scholar 

  25. Costantini C, Calzetti F, Perbellini O, Micheletti A, Scarponi C, Lonardi S, et al. Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFN{gamma}: role of CD18, ICAM-1, and ICAM-3. Blood 2011;117(5):1677–1686

    CAS  PubMed  Google Scholar 

  26. Sutti S, Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol 2020;17(2):81–92

    CAS  PubMed  Google Scholar 

  27. Yeh MM, Brunt EM. Pathological features of fatty liver disease. Gastroenterology 2014;147(4):754–764

    CAS  PubMed  Google Scholar 

  28. Gadd VL, Skoien R, Powell EE, Fagan KJ, Winterford C, Horsfall L, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014;59(4):1393–1405

    PubMed  Google Scholar 

  29. Bruzzi S, Sutti S, Giudici G, Burlone ME, Ramavath NN, Toscani A, et al. B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD). Free Radic Biol Med 2018;124:249–259

    CAS  PubMed  Google Scholar 

  30. Luo XY, Takahara T, Kawai K, Fujino M, Sugiyama T, Tsuneyama K, et al. IFN-gamma deficiency attenuates hepatic inflammation and fibrosis in a steatohepatitis model induced by a methionine- and choline-deficient high-fat diet. Am J Physiol Gastrointest Liver Physiol 2013;305(12):G891–G899

    CAS  PubMed  Google Scholar 

  31. Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C, et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 2010;115(2):335–343

    CAS  PubMed  Google Scholar 

  32. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011;11(8):519–531

    CAS  PubMed  Google Scholar 

  33. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41(6):1313–1321

    PubMed  Google Scholar 

  34. Richardson MM, Jonsson JR, Powell EE, Brunt EM, Neuschwander-Tetri BA, Bhathal PS, et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007;133(1):80–90

    PubMed  Google Scholar 

  35. Wong VW, Wong GL, Chan HY, Yeung DK, Chan RS, Chim AM, et al. Bacterial endotoxin and non-alcoholic fatty liver disease in the general population: a prospective cohort study. Aliment Pharmacol Ther 2015;42(6):731–740

    CAS  PubMed  Google Scholar 

  36. Pang J, Xu W, Zhang X, Wong GL, Chan AW, Chan HY, et al. Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2017;46(2):175–182

    CAS  PubMed  Google Scholar 

  37. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56(7):1761–1772

    CAS  PubMed  Google Scholar 

  38. Mao JW, Tang HY, Zhao T, Tan XY, Bi J, Wang BY, et al. Intestinal mucosal barrier dysfunction participates in the progress of nonalcoholic fatty liver disease. Int J Clin Exp Pathol 2015;8(4):3648–3658

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh R, Bullard J, Kalra M, Assefa S, Kaul AK, Vonfeldt K, et al. Status of bacterial colonization, Toll-like receptor expression and nuclear factor-kappa B activation in normal and diseased human livers. Clin Immunol 2011;138(1):41–49

    CAS  PubMed  Google Scholar 

  40. Boursier J, Diehl AM. Nonalcoholic fatty liver disease and the gut microbiome. Clin Liver Dis 2016;20(2):263–275

    PubMed  Google Scholar 

  41. Campo L, Eiseler S, Apfel T, Pyrsopoulos N. Fatty liver disease and gut microbiota: a comprehensive update. J Clin Transl Hepatol 2019;7(1):56–60

    PubMed  Google Scholar 

  42. Everard A, Geurts L, Caesar R, Van Hul M, Matamoros S, Duparc T, et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun 2014;5:5648

    CAS  PubMed  Google Scholar 

  43. Fujimoto M, Uemura M, Nakatani Y, Tsujita S, Hoppo K, Tamagawa T, et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: relation to severity of liver disturbance. Alcohol Clin Exp Res 2000;24(4 Suppl):48S–54S

    CAS  PubMed  Google Scholar 

  44. van Zutphen T, Ciapaite J, Bloks VW, Ackereley C, Gerding A, Jurdzinski A, et al. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction. J Hepatol 2016;65(6):1198–1208

    PubMed  Google Scholar 

  45. Cherkaoui-Malki M, Surapureddi S, El-Hajj HI, Vamecq J, Andreoletti P. Hepatic steatosis and peroxisomal fatty acid beta-oxidation. Curr Drug Metab 2012;13(10):1412–1421

    CAS  PubMed  Google Scholar 

  46. Vendemiale G, Grattagliano I, Caraceni P, Caraccio G, Domenicali M, Dall'Agata M, et al. Mitochondrial oxidative injury and energy metabolism alteration in rat fatty liver: effect of the nutritional status. Hepatology 2001;33(4):808–815

    CAS  PubMed  Google Scholar 

  47. Rector RS, Thyfault JP, Uptergrove GM, Morris EM, Naples SP, Borengasser SJ, et al. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol 2010;52(5):727–736

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 2012;18(9):1407–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ou R, Liu J, Lv M, Wang J, Wang J, Zhu L, et al. Neutrophil depletion improves diet-induced non-alcoholic fatty liver disease in mice. Endocrine 2017;57(1):72–82

    CAS  PubMed  Google Scholar 

  50. Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater 2017;4(1):55–68

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol 2014;5:508

    PubMed  PubMed Central  Google Scholar 

  52. Gao B, Tsukamoto H. Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe? Gastroenterology 2016;150(8):1704–1709

    PubMed  Google Scholar 

  53. Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells—gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol 2018;15(9):555–567

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hammoutene A, Rautou PE. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. J Hepatol 2019;70(6):1278–1291

    CAS  PubMed  Google Scholar 

  55. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013;13(3):159–175

    CAS  PubMed  Google Scholar 

  56. Liaskou E, Wilson DV, Oo YH. Innate immune cells in liver inflammation. Mediators Inflamm 2012;2012:949157

    PubMed  PubMed Central  Google Scholar 

  57. Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 2014;40(3):315–327

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014;510(7503):92–101

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Calvente CJ, Tameda M, Johnson CD, Del Pilar H, Lin YC, Adronikou N, et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J Clin Investig 2019;129(10):4091–4109

    PubMed  PubMed Central  Google Scholar 

  60. Yang W, Tao Y, Wu Y, Zhao X, Ye W, Zhao D, et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun 2019;10(1):1076

    PubMed  PubMed Central  Google Scholar 

  61. Borregaard N, Sorensen OE, Theilgaard-Monch K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol 2007;28(8):340–345

    CAS  PubMed  Google Scholar 

  62. Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 2006;6(7):541–550

    CAS  PubMed  Google Scholar 

  63. Yin C, Heit B. Armed for destruction: formation, function and trafficking of neutrophil granules. Cell Tissue Res 2018;371(3):455–471

    CAS  PubMed  Google Scholar 

  64. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol 2005;77(5):598–625

    CAS  PubMed  Google Scholar 

  65. Parker H, Albrett AM, Kettle AJ, Winterbourn CC. Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J Leukoc Biol 2012;91(3):369–376

    CAS  PubMed  Google Scholar 

  66. Rensen SS, Slaats Y, Nijhuis J, Jans A, Bieghs V, Driessen A, et al. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am J Pathol 2009;175(4):1473–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rensen SS, Bieghs V, Xanthoulea S, Arfianti E, Bakker JA, Shiri-Sverdlov R, et al. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS One 2012;7(12):e52411

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Owen CA. Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease. Int J Chron Obstr Pulm Dis 2008;3(2):253–268

    CAS  Google Scholar 

  69. Millet A, Martin KR, Bonnefoy F, Saas P, Mocek J, Alkan M, et al. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis. J Clin Investig 2015;125(11):4107–4121

    PubMed  PubMed Central  Google Scholar 

  70. Wang Y, Xiao Y, Zhong L, Ye D, Zhang J, Tu Y, et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with beta-cell autoimmunity in patients with type 1 diabetes. Diabetes 2014;63(12):4239–4248

    CAS  PubMed  Google Scholar 

  71. Mirea AM, Toonen EJM, van den Munckhof I, Munsterman ID, Tjwa E, Jaeger M, et al. Increased proteinase 3 and neutrophil elastase plasma concentrations are associated with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. Mol Med 2019;25(1):16

    PubMed  PubMed Central  Google Scholar 

  72. Wittamer V, Bondue B, Guillabert A, Vassart G, Parmentier M, Communi D. Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J Immunol 2005;175(1):487–493

    CAS  PubMed  Google Scholar 

  73. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010;191(3):677–691

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang JY, Khan AR, et al. Imbalance between neutrophil elastase and its inhibitor alpha1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab 2013;17(4):534–548

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y. Small lipid-binding proteins in regulating endothelial and vascular functions: focusing on adipocyte fatty acid binding protein and lipocalin-2. Br J Pharmacol 2012;165(3):603–621

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Law IK, Xu A, Lam KS, Berger T, Mak TW, Vanhoutte PM, et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 2010;59(4):872–882

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Borkham-Kamphorst E, Drews F, Weiskirchen R. Induction of lipocalin-2 expression in acute and chronic experimental liver injury moderated by pro-inflammatory cytokines interleukin-1beta through nuclear factor-kappaB activation. Liver Int 2011;31(5):656–665

    CAS  PubMed  Google Scholar 

  78. Auguet T, Terra X, Quintero Y, Martinez S, Manresa N, Porras JA, et al. Liver lipocalin 2 expression in severely obese women with non alcoholic fatty liver disease. Exp Clin Endocrinol Diabetes 2013;121(2):119–124

    CAS  PubMed  Google Scholar 

  79. Liu JT, Song E, Xu A, Berger T, Mak TW, Tse HF, et al. Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. Br J Pharmacol 2012;165(2):520–531

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ye D, Yang K, Zang S, Lin Z, Chau HT, Wang Y, et al. Lipocalin-2 mediates non-alcoholic steatohepatitis by promoting neutrophil-macrophage crosstalk via the induction of CXCR2. J Hepatol 2016;65(5):988–997

    CAS  PubMed  Google Scholar 

  81. Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 2007;5(8):577–582

    CAS  PubMed  Google Scholar 

  82. Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 2014;15(11):1017–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Honda M, Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol 2018;15(4):206–221

    CAS  PubMed  Google Scholar 

  84. Vorobjeva NV, Pinegin BV. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc) 2014;79(12):1286–1296

    CAS  Google Scholar 

  85. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017;23(3):279–287

    CAS  PubMed  Google Scholar 

  86. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007;176(2):231–241

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Grayson PC, Kaplan MJ. At the Bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J Leukoc Biol 2016;99(2):253–264

    CAS  PubMed  Google Scholar 

  88. Pinegin B, Vorobjeva N, Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev 2015;14(7):633–640

    CAS  PubMed  Google Scholar 

  89. van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018;68(4):1347–1360

    PubMed  Google Scholar 

  90. Nemeth T, Mocsai A. Feedback amplification of neutrophil function. Trends Immunol 2016;37(6):412–424

    CAS  PubMed  Google Scholar 

  91. Bronze-da-Rocha E, Santos-Silva A. Neutrophil elastase inhibitors and chronic kidney disease. Int J Biol Sci 2018;14(10):1343–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 2010;62(4):726–759

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zani ML, Tanga A, Saidi A, Serrano H, Dallet-Choisy S, Baranger K, et al. SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem Soc Trans 2011;39(5):1441–1446

    CAS  PubMed  Google Scholar 

  94. Malle E, Furtmuller PG, Sattler W, Obinger C. Myeloperoxidase: a target for new drug development? Br J Pharmacol 2007;152(6):838–854

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jantschko W, Furtmuller PG, Zederbauer M, Neugschwandtner K, Lehner I, Jakopitsch C, et al. Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design. Biochem Pharmacol 2005;69(8):1149–1157

    CAS  PubMed  Google Scholar 

  96. Zhang H, Jing X, Shi Y, Xu H, Du J, Guan T, et al. N-Acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor. J Lipid Res 2013;54(11):3016–3029

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Regasini LO, Vellosa JC, Silva DH, Furlan M, de Oliveira OM, Khalil NM, et al. Flavonols from Pterogyne nitens and their evaluation as myeloperoxidase inhibitors. Phytochemistry 2008;69(8):1739–1744

    CAS  PubMed  Google Scholar 

  98. Galijasevic S. The development of myeloperoxidase inhibitors. Bioorg Med Chem Lett 2019;29(1):1–7

    CAS  PubMed  Google Scholar 

  99. Suk K. Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol 2016;144:158–172

    CAS  PubMed  Google Scholar 

  100. Asimakopoulou A, Weiskirchen S, Weiskirchen R. Lipocalin 2 (LCN2) expression in hepatic malfunction and therapy. Front Physiol 2016;7:430

    PubMed  PubMed Central  Google Scholar 

  101. Chandrashekara S, Mukhtar Ahmad M, Renuka P, Anupama KR, Renuka K. Characterization of neutrophil-to-lymphocyte ratio as a measure of inflammation in rheumatoid arthritis. Int J Rheum Dis 2017;20(10):1457–1467

    CAS  PubMed  Google Scholar 

  102. Faria SS, Fernandes PC Jr, Silva MJ, Lima VC, Fontes W, Freitas-Junior R, et al. The neutrophil-to-lymphocyte ratio: a narrative review. Ecancermedicalscience 2016;10:702

    PubMed  PubMed Central  Google Scholar 

  103. Acarturk G, Acay A, Demir K, Ulu MS, Ahsen A, Yuksel S. Neutrophil-to-lymphocyte ratio in inflammatory bowel disease—as a new predictor of disease severity. Bratisl Lek Listy 2015;116(4):213–217

    CAS  PubMed  Google Scholar 

  104. Alkhouri N, Morris-Stiff G, Campbell C, Lopez R, Tamimi TA, Yerian L, et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int 2012;32(2):297–302

    CAS  PubMed  Google Scholar 

  105. Yilmaz H, Yalcin KS, Namuslu M, Celik HT, Sozen M, Inan O, et al. Neutrophil-lymphocyte ratio (NLR) could be better predictor than C-reactive protein (CRP) for liver fibrosis in non-alcoholic steatohepatitis(NASH). Ann Clin Lab Sci 2015;45(3):278–286

    CAS  PubMed  Google Scholar 

  106. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 1993;268(14):10425–10432

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratory is financially supported by NSFC Grant (81570701, 81770849, 81830113), Key Research Program in Department of Education of Guangdong Province (2016KZDXM041), Key Laboratory of Model Animal Phenotyping and Basic Research in Metabolic Diseases (2018KSYS003), Major basic and applied basic research projects in Guangdong Province (2019B030302005), Research Fund in TCM Bureau of Guangdong Province (20181156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dewei Ye or Jiao Guo.

Ethics declarations

Conflict of interest

Lihong Wu, Xiang Gao, Qianyu Guo, Jufei Li, Jianyu Yao, Kaixuan Yan, Ying Xu, Xue Jiang, Dewei Ye, Jiao Guo have no conflict to declare.

Ethical standards

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Gao, X., Guo, Q. et al. The role of neutrophils in innate immunity-driven nonalcoholic steatohepatitis: lessons learned and future promise. Hepatol Int 14, 652–666 (2020). https://doi.org/10.1007/s12072-020-10081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-020-10081-7

Keywords

Navigation