Skip to main content

Advertisement

Log in

Cell-free DNA as a potential marker to predict carbon tetrachloride-induced acute liver injury in rats

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Purpose

Finding an optimal biomarker for the noninvasive evaluation of acute liver injury (ALI) may be of great value in predicting clinical outcomes and investigating potential treatments. We investigated cell-free DNA (CFD) as a potential biomarker to predict carbon tetrachloride-induced ALI in rats.

Methods

Forty-five Sprague–Dawley rats were randomly assigned to three groups. ALI was induced by carbon tetrachloride via a nasogastric tube at 1, 2.5, or 5 ml/kg of a 50 % solution. Fifteen additional rats underwent a sham procedure. Blood samples were drawn at time t which was 0 (baseline), 3, 6, 12, 24, 48, 72, 96, and 120 h for the measurements of CFD, glutamate–pyruvate transaminase (GPT), glutamate–oxaloacetate transaminase (GOT), and total bilirubin. Prothrombin time and histology were examined at 24 and 120 h following injection of 5 ml/kg carbon tetrachloride in 18 additional rats and in 10 control rats.

Results

CFD levels in rats subjected to carbon tetrachloride-induced ALI were significantly increased in all blood samples starting at 12 h after the induction of ALI (p < 0.001), reaching peak levels at 24 h. Blood GOT, GPT, and total bilirubin were elevated in all blood samples starting at 3 h after the induction of ALI (p < 0.0001), reaching peak levels by 48 h. A positive correlation was demonstrated between CFD levels and GOT (R 2 = 0.92), GPT (R 2 = 0.92), and total bilirubin (R 2 = 0.76). CFD levels correlated with liver damage seen on histological examination, as well as predicted liver damage, at 24 h after ALI.

Conclusions

CFD may be a useful biomarker for the prediction and measurement of ALI. There is no evidence to suggest that CFD is superior to other available noninvasive biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernuau J, Rueff B, Benhamou JP. Fulminant and subfulminant liver failure: definitions and causes. Semin Liver Dis 1986;6(2):97–106

    Article  CAS  Google Scholar 

  2. Riordan SM, Williams R. Treatment of hepatic encephalopathy. N Engl J Med 1997;337(7):473–479

    Article  CAS  Google Scholar 

  3. Auzinger G, Wendon J. Intensive care management of acute liver failure. Curr Opin Crit Care 2008;14(2):179–188

    Article  Google Scholar 

  4. Lidofsky SD. Liver transplantation for fulminant hepatic failure. Gastroenterol Clin North Am 1993;22(2):257–269

    CAS  PubMed  Google Scholar 

  5. Rakela J, Lange SM, Ludwig J, Baldus WP. Fulminant hepatitis: mayo clinic experience with 34 cases. Mayo Clin Proc 1985;60(5):289–292

    Article  CAS  Google Scholar 

  6. Hoofnagle JH, Carithers RL Jr, Shapiro C, Ascher N. Fulminant hepatic failure: summary of a workshop. Hepatology 1995;21(1):240–252

    CAS  PubMed  Google Scholar 

  7. Grigorescu M. Noninvasive biochemical markers of liver fibrosis. J Gastrointestin Liver Dis 2006;15(2):149–159

    PubMed  Google Scholar 

  8. Rutherford AE, Hynan LS, Borges CB, et al. Serum apoptosis markers in acute liver failure: a pilot study. Clin Gastroenterol Hepatol 2007;5(12):1477–1483

    Article  CAS  Google Scholar 

  9. Tagami A, Ohnishi H, Hughes RD. Increased serum soluble Fas in patients with acute liver failure due to paracetamol overdose. Hepatogastroenterology 2003;50(51):742–745

    CAS  PubMed  Google Scholar 

  10. Singhal S, Chakravarty A, Das BC, Kar P. Tumour necrosis factor-alpha and soluble Fas ligand as biomarkers in non-acetaminophen-induced acute liver failure. Biomarkers 2009;14(5):347–353

    Article  CAS  Google Scholar 

  11. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology 2008;245(3):194–205

    Article  CAS  Google Scholar 

  12. Ohayon S, Boyko M, Saad A, et al. Cell-free DNA as a marker for prediction of brain damage in traumatic brain injury in rats. J Neurotrauma 2012;29(2):261–267

    Article  Google Scholar 

  13. Boyko M, Ohayon S, Goldsmith T, et al. Cell-free DNA—a marker to predict ischemic brain damage in a rat stroke experimental model. J Neurosurg Anesthesiol 2011;23(3):222–228

    Article  Google Scholar 

  14. Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 2007;581(5):795–799

    Article  CAS  Google Scholar 

  15. Shimony A, Zahger D, Gilutz H, et al. Cell free DNA detected by a novel method in acute ST-elevation myocardial infarction patients. Acute Card Care 2010;12(3):109–111

    Article  Google Scholar 

  16. Wu Q, Gong D, Tian N, et al. Protection of regenerating liver after partial hepatectomy from carbon tetrachloride hepatotoxicity in rats: roles of mitochondrial uncoupling protein 2 and ATP stores. Dig Dis Sci 2009;54(9):1918–1925

    Article  CAS  Google Scholar 

  17. Tunon MJ, Alvarez M, Culebras JM, Gonzalez-Gallego J. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J Gastroenterol 2009;15(25):3086–3098

    Article  CAS  Google Scholar 

  18. van de Kerkhove MP, Hoekstra R, van Gulik TM, Chamuleau RAFM. Large animal models of fulminant hepatic failure in artificial and bioartificial liver support research. Biomaterials 2004;25(9):1613–1625

    Article  Google Scholar 

  19. Zhang BH, Gong DZ, Mei MH. Protection of regenerating liver after partial hepatectomy from carbon tetrachloride hepatotoxicity in rats: role of hepatic stimulator substance. J Gastroenterol Hepatol 1999;14(10):1010–1017

    Article  CAS  Google Scholar 

  20. Ugazio G, Danni O, Milillo P, Burdino E, Congiu AM. Mechanism of protection against carbon tetrachloride toxicity. I. Prevention of lethal effects by partial surgical hepatectomy. Drug Chem Toxicol 1982;5(2):115–124

    Article  CAS  Google Scholar 

  21. Taniguchi M, Takeuchi T, Nakatsuka R, Watanabe T, Sato K. Molecular process in acute liver injury and regeneration induced by carbon tetrachloride. Life Sci 2004;75(13):1539–1549

    Article  CAS  Google Scholar 

  22. Goldshtein H, Hausmann MJ, Douvdevani A. A rapid direct fluorescent assay for cell-free DNA quantification in biological fluids. Ann Clin Biochem 2009;46(Pt 6):488–494

    Article  CAS  Google Scholar 

  23. Shimony A, Zahger D, Gilutz H, et al. Cell free DNA detected by a novel method in acute ST-elevation myocardial infarction patients. Acute Card Care 2010;12(3):109–111

    Article  Google Scholar 

  24. Wills PJ, Asha W. Protective effect of Lygodium flexuosum (L.) Sw. extract against carbon tetrachloride-induced acute liver injury in rats. J Ethnopharmacol 2006;108(3):320–326

    Article  CAS  Google Scholar 

  25. Ye X, Feng Y, Tong Y, et al. Hepatoprotective effects of Coptidis rhizoma aqueous extract on carbon tetrachloride-induced acute liver hepatotoxicity in rats. J Ethnopharmacol 2009;124(1):130–136

    Article  CAS  Google Scholar 

  26. Wang T, Sun NL, Zhang WD, et al. Protective effects of dehydrocavidine on carbon tetrachloride-induced acute hepatotoxicity in rats. J Ethnopharmacol 2008;117(2):300–308

    Article  CAS  Google Scholar 

  27. Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA. Plasma DNA as a prognostic marker in trauma patients. Clin Chem 2000;46(3):319–323

    CAS  PubMed  Google Scholar 

  28. Zachariah RR, Schmid S, Buerki N, et al. Levels of circulating cell-free nuclear and mitochondrial DNA in benign and malignant ovarian tumors. Obstet Gynecol 2008;112(4):843–850

    Article  CAS  Google Scholar 

  29. Gormally E, Caboux E, Vineis P, Hainaut P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res 2007;635(2–3):105–117

    Article  CAS  Google Scholar 

  30. Zhong XY, Ladewig A, Schmid S, et al. Elevated level of cell-free plasma DNA is associated with breast cancer. Arch Gynecol Obstet 2007;276(4):327–331

    Article  CAS  Google Scholar 

  31. Kamat AA, Baldwin M, Urbauer D, et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer 2010;116(8):1918–1925

    Article  CAS  Google Scholar 

  32. Chang CP, Chia RH, Wu TL, et al. Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta 2003;327(1–2):95–101

    Article  CAS  Google Scholar 

  33. Grill S, Rusterholz C, Zanetti-Dallenbach R, et al. Potential markers of preeclampsia—a review. Reprod Biol Endocrinol 2009;7:70–84

    Article  Google Scholar 

  34. Farina A, LeShane ES, Romero R, et al. High levels of fetal cell-free DNA in maternal serum: a risk factor for spontaneous preterm delivery. Am J Obstet Gynecol 2005;193(2):421–425

    Article  CAS  Google Scholar 

  35. Saukkonen K, Lakkisto P, Varpula M, et al. Association of cell-free plasma DNA with hospital mortality and organ dysfunction in intensive care unit patients. Intensive Care Med 2007;33(9):1624–1627

    Article  CAS  Google Scholar 

  36. Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care 2006;10(2):R60

    Article  Google Scholar 

  37. Saukkonen K, Lakkisto P, Pettila V, et al. Cell-free plasma DNA as a predictor of outcome in severe sepsis and septic shock. Clin Chem. 2008;54(6):1000–1007

    Article  CAS  Google Scholar 

  38. Lam NY, Rainer TH, Wong LK, Lam W, Lo YM. Plasma DNA as a prognostic marker for stroke patients with negative neuroimaging within the first 24 h of symptom onset. Resuscitation 2006;68(1):71–78

    Article  CAS  Google Scholar 

  39. Rainer TH, Wong LK, Lam W, et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 2003;49(4):562–569

    Article  CAS  Google Scholar 

  40. Gaffey MJ, Boyd JC, Traweek ST, et al. Predictive value of intraoperative biopsies and liver function tests for preservation injury in orthotopic liver transplantation. Hepatology 1997;25(1):184–189

    Article  CAS  Google Scholar 

  41. Janßen H, Lange R, Erhard J, et al. Serum bile acids in liver transplantation—early indicator for acute rejection and monitor for antirejection therapy. Transpl Int 2001;14(6):429–437

    Article  Google Scholar 

  42. Klin Y, Zlotnik A, Boyko M, et al. Distribution of radiolabeled l-glutamate and d-aspartate from blood into peripheral tissues in naive rats: significance for brain neuroprotection. Biochem Biophys Res Commun 2010;399(4):694–698

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zlotnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruenbaum, B.F., Boyko, M., Delgado, B. et al. Cell-free DNA as a potential marker to predict carbon tetrachloride-induced acute liver injury in rats. Hepatol Int 7, 721–727 (2013). https://doi.org/10.1007/s12072-012-9414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-012-9414-z

Keywords

Navigation