Skip to main content
Log in

Advances and bibliographic analysis of particle swarm optimization applications in electrical power system: concepts and variants

  • Review Article
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Power system applications often require solving one or multiple optimization problems which are nonlinear. Due to the limitations such as dimensionality constraints and slow convergence as offered by the analytical methods, swarm intelligence-based methods have emerged as a practical optimization problem solution alternate. Particle swarm optimization (PSO), a well-known member of the swarm intelligence-based family, has been acknowledged as an efficient solution for nonlinear extensive optimization problems. On the one hand, this article provides insights on basic notions and progress of the PSO in power system applications and case studies highlighting the best performance of PSO and its variants. Technical visions essential for the application of PSO, like its form, particle presentation, and the most competent fitness functions, are also depicted for the respective application. On the other hand, it presents a comprehensive bibliographic analysis of 144 high-impact journal articles concerning the prominent applications of PSO as an optimization method in power systems, having more than twenty citations and ordered by the number of citations in descending order. The outcomes of this bibliographic scrutiny demonstrate that Elsevier, IEEE, and Springer articles are the most significant. It also recognizes the most influential and high-impact journals and countries/regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PSO:

Particle swarm optimization

LP:

Linear programming

NLP:

Nonlinear programming

DP:

Dynamic programming

AI:

Artificial Intelligence

CI:

Computational intelligence

BSOA:

Backtracking search optimization algorithm

RE:

Renewable energy

DG:

Distributed generation

WOA:

Whale optimization algorithm

SKHA:

Stud krill herd algorithm

WT:

Wind turbine

PV:

Photovoltaic

DA:

Dragonfly algorithm

MOEA/D:

Memetic binary differential evolution algorithm

UC:

Unit commitment

CHP:

Combined heat and power

VVC:

volt/var control

ED:

Economic dispatch

SE:

State estimation

OPF:

Optimal power flow

LF:

Load flow

PI:

Proportional integrator

MSE:

Mean-squared error

UC:

Unit commitment

HHO:

Harris Hawk optimizer

TVACPSO:

Time variant acceleration cofficient PSO

BSCA:

Binary Sine Cosine Algorithm

WOA:

Whale optimization algorithm

f :

Objective function

\(J_i (x_i)\) :

Function of particle’s position

A :

Search space

\(g_(x)\) :

Equality constraint function

k :

Number of equality constraint

\(h_(x)\) :

Non-equality constraint functions

m :

Number of non-equality constraints

x :

Particle’s position

v :

Particle’s velocity

t :

Number of iterations

\(\varphi\) :

Acceleration constant

\(p_{i}\) :

Personal bestof the \(i^{th}\) particle

\(p_{g}\) :

Global best of the \(i^{th}\) particle

P :

Probability function

d :

Bit in a string

i :

Index of \(i^{th}\) individual

\(V_{id}\) :

Particle’s velocity vector

\(X_{id}\) :

Particle’s position vector

w :

Weight vector

z :

Measurement vector

T :

Transformer tapping

P :

Active power

Q :

Reactive power

a, b, c :

Positive constants

N :

Number of buses

e :

Error vector

\(\delta\) :

Phase angle

V :

Voltage magnitude

VSI:

Voltage stability index

References

  1. Zhang Y, Wang S, & Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng

  2. Freitas D, Lopes LG, Morgado-Dias F (2020) Particle swarm optimisation: a historical review up to the current developments. Entropy 22(3):362

    Article  Google Scholar 

  3. Schrijver, A (1998) Theory of linear and integer programming. Wiley, New York

    MATH  Google Scholar 

  4. Tiwari S, Kumar A (2021) Reconfiguration and optimal micro-phasor unit placement in a distribution system using Taguchi–Binary particle swarm optimization. Arab J Sci Eng 46(2):1213–1223

    Article  Google Scholar 

  5. Jabr RA, Coonick AH, Cory BJ (2000) A homogeneous linear programming algorithm for the security constrained economic dispatch problem. IEEE Trans Power Syst 15(3):930–936

    Article  Google Scholar 

  6. Habiballah IO, Irving MR (2001) Observability analysis for state estimation using linear programming. IEE Proc-Gener Transm Distrib 148(2):142–145

    Article  Google Scholar 

  7. Khodr HM, Gomez JF, Barnique L, Vivas JH, Paiva P, Yusta JM, Urdaneta AJ (2002) A linear programming methodology for the optimization of electric power-generation schemes. IEEE Trans Power Syst 17(3):864–869

    Article  Google Scholar 

  8. Motto AL, Arroyo JM, Galiana FD (2005) A mixed-integer LP procedure for the analysis of electric grid security under disruptive threat. IEEE Trans Power Syst 20(3):1357–1365

    Article  Google Scholar 

  9. Paiva PC, Khodr HM, Dominguez-Navarro JA, Yusta JM, Urdaneta AJ (2005) Integral planning of primary-secondary distribution systems using mixed integer linear programming. IEEE Trans Power Syst 20(2):1134–1143

    Article  Google Scholar 

  10. Nocedal JS, Wright J (1999) Numerical optimization. Springer, New York

    Book  MATH  Google Scholar 

  11. Torres GL, Quintana VH (2001) On a nonlinear multiple-centrality-corrections interior-point method for optimal power flow. IEEE Trans Power Syst 16(2):222–228

    Article  Google Scholar 

  12. Aponte EE, Nelson JK (2006) Time optimal load shedding for distributed power systems. IEEE Trans Power Syst 21(1):269–277

    Article  Google Scholar 

  13. Zarate LL, Castro CA, Ramos JLM, Ramos ER (2006) Fast computation of voltage stability security margins using nonlinear programming techniques. IEEE Trans Power Syst 21(1):19–27

    Article  Google Scholar 

  14. Pudjianto D, Ahmed S, Strbac G (2002) Allocation of VAR support using LP and NLP based optimal power flows. IEE Proc-Gener Transm Distrib 149(4):377–383

    Article  Google Scholar 

  15. Lehmkoster C (2002) Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets. IEEE Trans Power Deliv 17(2):603–608

    Article  Google Scholar 

  16. Finardi EC, da Silva EL (2006) Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming. IEEE Trans Power Syst 21(2):835–844

    Article  Google Scholar 

  17. Hsu YY, Kuo HC (1993) Dispatch of capacitors on distribution system using dynamic programming. In IEE Proceedings C (Generation, Transmission and Distribution) 140(6):433–438. IET Digital Library

  18. Ouyang Z, Shahidehpour SM (1991) An intelligent dynamic programming for unit commitment application. IEEE Trans Power Syst 6(3):1203–1209

    Article  Google Scholar 

  19. Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795

    Article  Google Scholar 

  20. Abualigah LM, Khader AT, Hanandeh ES (2018) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466

    Article  Google Scholar 

  21. Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer, Berlin

    Book  Google Scholar 

  22. Huang XL, Ma X, Hu F (2018) Machine learning and intelligent communications. Mob Netw Appl 23(1):68–70

    Article  Google Scholar 

  23. Irtija N, Sangoleye F, Tsiropoulou EE (2020) Contract-theoretic demand response management in smart grid systems. IEEE Access 8:184976–184987

    Article  Google Scholar 

  24. Zhang R, Wu S, Cao Z, Lu J, Gao F (2017) A systematic min-max optimization design of constrained model predictive tracking control for industrial processes against uncertainty. IEEE Trans Control Syst Technol 26(6):2157–2164

    Article  Google Scholar 

  25. El-Fergany A (2015) Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm. Int J Electr Power Energy Syst 64:1197–1205

    Article  Google Scholar 

  26. Veera Reddy VC (2018) Optimal renewable resources placement in distribution networks by combined power loss index and whale optimization algorithms. J Electr Syst Inf Technol 5(2):175–191

    Article  Google Scholar 

  27. ChithraDevi SA, Lakshminarasimman L, Balamurugan R (2017) Stud Krill herd Algorithm for multiple DG placement and sizing in a radial distribution system. Eng Sci Technol Int J 20(2):748–759

    Google Scholar 

  28. Suresh MCV, Belwin EJ (2018) Optimal DG placement for benefit maximization in distribution networks by using Dragonfly algorithm. Renew Wind Water Solar 5(1):1–8

    Google Scholar 

  29. Biswas PP, Mallipeddi R, Suganthan PN, Amaratunga GA (2017) A multiobjective approach for optimal placement and sizing of distributed generators and capacitors in distribution network. Appl Soft Comput 60:268–280

    Article  Google Scholar 

  30. Dhaliwal JS, Dhillon JS (2019) Profit based unit commitment using memetic binary differential evolution algorithm. Appl Soft Comput 81:1–20

    Article  Google Scholar 

  31. Anand H (2020) An efficient approach to schedule generating units of combined heat and power (CHP) generating system. IETE J Res 1–23

  32. Lin C, Wu W, Wang B et al (2020) Joint commitment of generation units and heat exchange stations for combined heat and power systems. IEEE Trans Sustain Energy 11(3):1118–1127

    Article  Google Scholar 

  33. Senjyu T, Miyagi T, Saber AY et al (2006) Emerging solution of large-scale unit commitment problem by stochastic priority list. Electr Power Syst Res 76:283–292

    Article  Google Scholar 

  34. Peng X, Jirutitijaroen P (2013) A stochastic optimization formulation of unit commitment with reliability constraints. IEEE Trans Smart Grid 4:2200–2208

    Article  Google Scholar 

  35. De Jong KA (1993) Genetic algorithms are NOT function optimizers. In Foundations of genetic algorithms (vol. 2, pp. 5-17). Elsevier

  36. Land WH, Schaffer JD (2020) Background on genetic algorithms. In: The art and science of machine intelligence. Springer, Cham

  37. Elhedhli S, Akdemir C, Åstebro T (2014) Classification models via Tabu search: an application to early stage venture classification. Expert Syst Appl 41(18):8085–8091

    Article  Google Scholar 

  38. Tan WS, Hassan MY, Majid MS, Rahman HA (2013) Optimal distributed renewable generation planning: a review of different approaches. Renew Sustain Energy Rev 18:626–645

    Article  Google Scholar 

  39. Daiva S, Saulius G, Liudmila A (2017) Energy distribution planning models taxonomy and methods of distributed generation systems. Energy Proc 107:275–283

    Article  Google Scholar 

  40. Ding M, Chen H, Lin N, Jing S, Liu F, Liang X, Liu W (2017) Dynamic population artificial bee colony algorithm for multi-objective optimal power flow. Saudi J Biol Sci 24(3):703–710

    Article  Google Scholar 

  41. Tabatabaei NM, Aghbolaghi AJ, Bizon N, Blaabjerg F (2017) Reactive power control in AC power systems. Springer, Switzerland

    Book  Google Scholar 

  42. Georgilakis PS, Hatziargyriou ND (2015) A review of power distribution planning in the modern power systems era: models, methods and future research. Electr Power Syst Res 121:89–100

    Article  Google Scholar 

  43. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In MHS’95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE

  44. Eberhart RC, Shi Y, Kennedy J (2001) Swarm intelligence. Elsevier, New York

    Google Scholar 

  45. Millonas M (1994) Swarms, phase transitions, and collective intelligence. Proc. Artificial Life

  46. Del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evolut Comput 12(2):171–195

    Article  Google Scholar 

  47. Singh SP, Rao AR (2012) Optimal allocation of capacitors in distribution systems using particle swarm optimization. Int J Electr Power Energy Syst 43(1):1267–1275

    Article  Google Scholar 

  48. Pourmousavi SA, Nehrir MH, Colson CM, Wang C (2010) Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization. IEEE Trans Sustain Energy 1(3):193–201

    Article  Google Scholar 

  49. Hajforoosh S, Nabavi SMH, Masoum MAS (2012) Coordinated aggregated-based particle swarm optimisation algorithm for congestion management in restructured power market by placement and sizing of unified power flow controller. IET Sci Meas Technol 6(4):267–278

    Article  Google Scholar 

  50. Gong DW, Zhang Y, Qi CL (2010) Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm. Int J Electr Power Energy Syst 32(6):607–614

    Article  Google Scholar 

  51. Wang L, Singh C (2009) Reserve-constrained multiarea environmental/economic dispatch based on particle swarm optimization with local search. Eng Appl Artif Intell 22(2):298–307

    Article  Google Scholar 

  52. Pandi VR, Panigrahi BK, Bansal RC, Das S, Mohapatra A (2011) Economic load dispatch using hybrid swarm intelligence based harmony search algorithm. Electr Power Compon Syst 39(8):751–767

    Article  Google Scholar 

  53. Naka S, Genji T, Yura T, Fukuyama Y (2003) A hybrid particle swarm optimization for distribution state estimation. IEEE Trans Power Syst 18(1):60–68

    Article  Google Scholar 

  54. Hajian M, Ranjbar AM, Amraee T, Mozafari B (2011) Optimal placement of PMUs to maintain network observability using a modified BPSO algorithm. Int J Electr Power Energy Syst 33(1):28–34

    Article  Google Scholar 

  55. Mallick S, Ghoshal SP, Acharjee P, Thakur SS (2013) Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm. Int J Electr Power Energy Syst 52:254–265

    Article  Google Scholar 

  56. Saboori H, Hemmati R (2016) Optimal management and planning of storage systems based on particle swarm optimization technique. J Renew Sustain Energy 8(2):024105

    Article  Google Scholar 

  57. Hoang TT, Cho MY, Alam MN, Vu QT (2018) A novel differential particle swarm optimization for parameter selection of support vector machines for monitoring metal-oxide surge arrester conditions. Swarm Evol Comput 38:120–126

    Article  Google Scholar 

  58. Tang J, Wang D, Wang X, Jia H, Wang C, Huang R, Fan M (2017) Study on day-ahead optimal economic operation of active distribution networks based on Kriging model assisted particle swarm optimization with constraint handling techniques. Appl Energy 204:143–162

    Article  Google Scholar 

  59. Prasad S, Kumar DV (2017) Optimal allocation of measurement devices for distribution state estimation using multiobjective hybrid PSO-krill herd algorithm. IEEE Trans Instrum Meas 66(8):2022–2035

    Article  Google Scholar 

  60. Hagh MT, Amiyan P, Galvani S, Valizadeh N (2018) Probabilistic load flow using the particle swarm optimisation clustering method. IET Gener Transm Distrib 12(3):780–789

    Article  Google Scholar 

  61. Darabi A, Bagheri M, Gharehpetian GB (2019) Highly accurate directional overcurrent coordination via combination of rosens gradient projection-complex method with GA-PSO algorithm. IEEE Syst J 14(1):1171–1182

    Article  Google Scholar 

  62. Meng Y, Li S, Zou Y, Li K, Wang X, Wang X (2020) Stability analysis and control optimisation based on particle swarm algorithm of modular multilevel matrix converter in fractional frequency transmission system. IET Gener Transm Distrib 14(14):2641–2655

    Article  Google Scholar 

  63. Pegado R, Naupari Z, Molina Y, Castillo C (2019) Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO. Electr Power Syst Res 169:206–213

    Article  Google Scholar 

  64. Xi Y, Tang X, Li Z, Cui Y, Zhao T, Zeng X, Duan W (2019) Harmonic estimation in power systems using an optimised adaptive Kalman filter based on PSO-GA. IET Gener Transm Distrib 13(17):3968–3979

    Article  Google Scholar 

  65. Tolba MA, Zaki Diab AA, Vanin AS, Tulsky VN, Abdelaziz AY (2018) Integration of renewable distributed generation in distribution networks including a practical case study based on a hybrid psogsa optimization algorithm. Electr Power Compon Syst 46(19–20):2103–2116

    Article  Google Scholar 

  66. Basu M (2015) Modified particle swarm optimization for non-smooth non-convex combined heat and power economic dispatch. Electr Power Compon Syst 43(19):2146–2155

    Article  Google Scholar 

  67. Jangir P, Parmar SA, Trivedi IN, Bhesdadiya RH (2017) A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem. Eng Sci Technol Int J 20(2):570–586

    Google Scholar 

  68. Ameli A, Bahrami S, Khazaeli F, Haghifam MR (2014) A multiobjective particle swarm optimization for sizing and placement of DGs from DG owners and distribution companys viewpoints. IEEE Trans Power Deliv 29(4):1831–1840

    Article  Google Scholar 

  69. Teeparthi K, Kumar DV (2017) Multi-objective hybrid PSO–APO algorithm based security constrained optimal power flow with wind and thermal generators. Eng Sci Technol Int J 20(2):411–426

    Google Scholar 

  70. Zeng N, Zhang H, Liu W, Liang J, Alsaadi FE (2017) A switching delayed PSO optimized extreme learning machine for short-term load forecasting. Neurocomputing 240:175–182

    Article  Google Scholar 

  71. Zhang J, Wang J, Yue C (2011) Small population-based particle swarm optimization for short-term hydrothermal scheduling. IEEE Trans Power Syst 27(1):142–152

    Article  Google Scholar 

  72. Aghaei J, Muttaqi KM, Azizivahed A, Gitizadeh M (2014) Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm. Energy 65:398–411

    Article  Google Scholar 

  73. Ganguly S (2014) Multi-objective planning for reactive power compensation of radial distribution networks with unified power quality conditioner allocation using particle swarm optimization. IEEE Trans Power Syst 29(4):1801–1810

    Article  Google Scholar 

  74. Vaisakh K, Praveena P, Rao SRM, Meah K (2012) Solving dynamic economic dispatch problem with security constraints using bacterial foraging PSO-DE algorithm. Int J Electr Power Energy Syst 39(1):56–67

    Article  Google Scholar 

  75. Tan WS, Hassan MY, Rahman HA, Abdullah MP, Hussin F (2013) Multi-distributed generation planning using hybrid particle swarm optimisation-gravitational search algorithm including voltage rise issue. IET Gener Transm Distrib 7(9):929–942

    Article  Google Scholar 

  76. Hosseinnezhad V, Rafiee M, Ahmadian M, Ameli MT (2014) Species-based quantum particle swarm optimization for economic load dispatch. Int J Electr Power Energy Syst 63:311–322

    Article  Google Scholar 

  77. Jordehi AR (2018) Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Sol Energy 159:78–87

    Article  Google Scholar 

  78. Kerdphol T, Qudaih Y, Mitani Y (2016) Optimum battery energy storage system using PSO considering dynamic demand response for microgrids. Int J Electr Power Energy Syst 83:58–66

    Article  Google Scholar 

  79. Jadoun VK, Gupta N, Niazi KR, Swarnkar A (2015) Modulated particle swarm optimization for economic emission dispatch. Int J Electr Power Energy Syst 73:80–88

    Article  Google Scholar 

  80. Jiang S, Ji Z, Wang Y (2015) A novel gravitational acceleration enhanced particle swarm optimization algorithm for wind-thermal economic emission dispatch problem considering wind power availability. Int J Electr Power Energy Syst 73:1035–1050

    Article  Google Scholar 

  81. Ghasemi M, Aghaei J, Akbari E, Ghavidel S, Li L (2016) A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems. Energy 107:182–195

    Article  Google Scholar 

  82. Samuel GG, Rajan CCA (2015) Hybrid: particle swarm optimization-genetic algorithm and particle swarm optimization-shuffled frog leaping algorithm for long-term generator maintenance scheduling. Int J Electr Power Energy Syst 65:432–442

    Article  Google Scholar 

  83. Samet H, Hashemi F, Ghanbari T (2015) Minimum non detection zone for islanding detection using an optimal artificial neural network algorithm based on PSO. Renew Sustain Energy Rev 52:1–18

    Article  Google Scholar 

  84. Kahourzade S, Mahmoudi A, Mokhlis HB (2015) A comparative study of multi-objective optimal power flow based on particle swarm, evolutionary programming, and genetic algorithm. Electr Eng 97(1):1–12

    Article  Google Scholar 

  85. Babu R, Bhattacharyya B (2016) Optimal allocation of phasor measurement unit for full observability of the connected power network. Int J Electr Power Energy Syst 79:89–97

    Article  Google Scholar 

  86. Khaled U, Eltamaly AM, Beroual A (2017) Optimal power flow using particle swarm optimization of renewable hybrid distributed generation. Energies 10(7):1013

    Article  Google Scholar 

  87. Ghatak SR, Sannigrahi S, Acharjee P (2017) Comparative performance analysis of DG and DSTATCOM using improved PSO based on success rate for deregulated environment. IEEE Syst J 12(3):2791–2802

    Article  Google Scholar 

  88. Priyadarshi N, Padmanaban S, Maroti PK, Sharma A (2018) An extensive practical investigation of FPSO-based MPPT for grid integrated PV system under variable operating conditions with anti-islanding protection. IEEE Syst J 13(2):1861–1871

    Article  Google Scholar 

  89. Nanchian S, Majumdar A, Pal BC (2015) Three-phase state estimation using hybrid particle swarm optimization. IEEE Trans Smart Grid 8(3):1035–1045

    Article  Google Scholar 

  90. Zhou Y, Wu J, Ji L, Yu Z, Lin K, Hao L (2018) Transient stability preventive control of power systems using chaotic particle swarm optimization combined with two-stage support vector machine. Electr Power Syst Res 155:111–120

    Article  Google Scholar 

  91. Bhadoria A, Marwaha S (2020) Moth flame optimizer-based solution approach for unit commitment and generation scheduling problem of electric power system. J Comput Des Eng 7(5):668–683

    Google Scholar 

  92. Kumar V, Naresh R (2020b) Application of BARON solver for solution of cost-based unit commitment. Int J Electr Eng Inform 12(4):807–827

    Google Scholar 

  93. Rahman DF, Viana A, Pedroso JP (2014) Metaheuristic search based methods for unit commitment. Int J Electr Power Energy Syst 59:14–22

    Article  Google Scholar 

  94. Najafi A, Farshad M, Falagi H (2015) A new heuristic method to solve unit commitment by using time variant acceleration coefficients particle swarm optimization algorithm. Turk J Electr Eng 23:354–369

    Google Scholar 

  95. Singhal PK, Naresh R , Sharma V (2015a) A modified binary artificial bee colony algorithm for ramp rate constrained unit commitment problem. Int Trans Electr Energy Syst 25:3472–3491

    Article  Google Scholar 

  96. Singhal PK (2016) Investigations using meta-heuristic-based approaches to solve unit commitment problems. PhD dissertation, NIT Hamirpur

  97. Ghadi MJ, Baghramian A, Imani MH (2016) An ICA based approach for solving profit based unit commitment problem market. Appl Soft Comput 38:487–500

    Article  Google Scholar 

  98. Reddy KS, Panwar LK, Panigrahi BK, Kumar R (2018) A new binary variant of sine-cosine algorithm: development and application to solve profit-based unit commitment problem. Arab J Sci Eng 43(8):4041–4056

    Article  Google Scholar 

  99. Reddy KS, Panwar L, Panigrahi BK, Kumar R (2018) Binary whale optimization algorithm for unit commitment problem in power system operation. Swarm Intell Innov New Algorithms Methods 119:293

    Article  Google Scholar 

  100. Kumar V, Naresh R, Singh A (2020a) Scheduling of energy on deregulated environment of profit-based unit commitment problem. In: IEEE 9th power India international conference (PIICON). Murthal

  101. Niknam T, Narimani MR, Jabbari M (2013) Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing. Int Trans Electr Energy Syst 23(7):975–1001

    Article  Google Scholar 

  102. Acharjee P, Goswami SK (2010) Chaotic particle swarm optimization based robust load flow. Int J Electr Power Energy Syst 32(2):141–146

    Article  Google Scholar 

  103. Acharjee P, Goswami SK (2009) Expert algorithm based on adaptive particle swarm optimization for power flow analysis. Expert Syst Appl 36(3):5151–5156

    Article  Google Scholar 

  104. Da Rocha MC, Saraiva JT (2013) A discrete evolutionary PSO based approach to the multiyear transmission expansion planning problem considering demand uncertainties. Int J Electr Power Energy Syst 45(1):427–442

    Article  Google Scholar 

  105. Voumvoulakis EM, Hatziargyriou ND (2009) A particle swarm optimization method for power system dynamic security control. IEEE Trans Power Syst 25(2):1032–1041

    Article  Google Scholar 

  106. Heo JH, Kim MK, Lyu JK (2014) Implementation of reliability-centered maintenance for transmission components using particle swarm optimization. Int J Electr Power Energy Syst 55:238–245

    Article  Google Scholar 

  107. Kalyani S, Swarup KS (2011) Classifier design for static security assessment using particle swarm optimization. Appl Soft Comput 11(1):658–666

    Article  Google Scholar 

  108. Liu A, Yang MT (2012) A new hybrid nelder-mead particle swarm optimization for coordination optimization of directional overcurrent relays. Math Probl Eng

  109. Kumar S, Mandal KK, Chakraborty N (2019) Optimal DG placement by multi-objective opposition based chaotic differential evolution for techno-economic analysis. Appl Soft Comput 78:70–83

    Article  Google Scholar 

  110. El-Fergany A (2016) Multi-objective allocation of multi-type distributed generators along distribution networks using backtracking search algorithm and fuzzy expert rules. Electr Power Compon Syst 44(3):252–267

    Article  Google Scholar 

  111. Sanjay R, Jayabarathi T, Raghunathan T, Ramesh V, Mithulananthan N (2017) Optimal allocation of distributed generation using hybrid grey wolf optimizer. IEEE Access 5:14807–14818

    Article  Google Scholar 

  112. Kansal S, Kumar V, Tyagi B (2016) Hybrid approach for optimal placement of multiple DGs of multiple types in distribution networks. Int J Electr Power Energy Syst 75:226–235

    Article  Google Scholar 

  113. Muthukumar K, Jayalalitha S (2016) Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. Int J Electr Power Energy Syst 78:299–319

    Article  Google Scholar 

  114. Elkadeem MR, Abd Elaziz M, Ullah Z, Wang S, Sharshir SW (2019) Optimal planning of renewable energy-integrated distribution system considering uncertainties. IEEE Access 7:164887–164907

    Article  Google Scholar 

  115. Moradi MH, Abedini M (2012) A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int J Electr Power Energy Syst 34(1):66–74

    Article  Google Scholar 

  116. Wang J, Zhai ZJ, Jing Y, Zhang C (2010) Particle swarm optimization for redundant building cooling heating and power system. Appl Energy 87(12):3668–3679

    Article  Google Scholar 

  117. Moradi A, Fotuhi-Firuzabad M (2007) Optimal switch placement in distribution systems using trinary particle swarm optimization algorithm. IEEE Trans Power Deliv 23(1):271–279

    Article  Google Scholar 

  118. Chuanwen J, Bompard E (2005) A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation. Math Comput Simul 68(1):57–65

    Article  MATH  Google Scholar 

  119. Yang J, He L, Fu S (2014) An improved PSO-based charging strategy of electric vehicles in electrical distribution grid. Appl Energy 128:82–92

    Article  Google Scholar 

  120. Etemadi AH, Fotuhi-Firuzabad M (2008) Distribution system reliability enhancement using optimal capacitor placement. IET Gener Transm Distrib 2(5):621–631

    Article  Google Scholar 

  121. Yu XM, Xiong XY, Wu YW (2004) A PSO-based approach to optimal capacitor placement with harmonic distortion consideration. Electr Power Syst Res 71(1):27–33

    Article  Google Scholar 

  122. Baghaee HR, Mirsalim M, Gharehpetian GB, Kaviani AK (2012) Security/cost-based optimal allocation of multi-type FACTS devices using multi-objective particle swarm optimization. Simulation 88(8):999–1010

    Article  Google Scholar 

  123. Ravi K, Rajaram M (2013) Optimal location of FACTS devices using improved particle swarm optimization. Int J Electr Power Energy Syst 49:333–338

    Article  Google Scholar 

  124. Mohkami H, Hooshmand R, Khodabakhshian A (2011) Fuzzy optimal placement of capacitors in the presence of nonlinear loads in unbalanced distribution networks using BF-PSO algorithm. Appl Soft Comput 11(4):3634–3642

    Article  Google Scholar 

  125. Shayeghi H, Shayanfar HA, Jalilzadeh S, Safari A (2010) Tuning of damping controller for UPFC using quantum particle swarm optimizer. Energy Convers Manag 51(11):2299–2306

    Article  Google Scholar 

  126. Benabid R, Boudour M, Abido MA (2009) Optimal location and setting of SVC and TCSC devices using non-dominated sorting particle swarm optimization. Electr Power Syst Res 79(12):1668–1677

    Article  Google Scholar 

  127. El-Dib AA, Youssef HK, El-Metwally MM, Osman Z (2006) Optimum VAr sizing & allocation using particle swarm optimization. In 2006 IEEE power engineering society general meeting (pp. 8-pp). IEEE

  128. Kannan SM, Renuga P, Kalyani S, Muthukumaran E (2011) Optimal capacitor placement and sizing using Fuzzy-DE and Fuzzy-MAPSO methods. Appl Soft Comput 11(8):4997–5005

    Article  Google Scholar 

  129. Su X, Masoum MA, Wolfs PJ (2015) PSO and improved BSFS based sequential comprehensive placement and real-time multi-objective control of delta-connected switched capacitors in unbalanced radial MV distribution networks. IEEE Trans Power Syst 31(1):612–622

    Article  Google Scholar 

  130. Laifa, A., & Boudour, M. (2009). Multi-objective particle swarm optimization for FACTS allocation to enhance voltage security. Int Rev Electr Eng 4(5)

  131. Gaing ZL (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195

    Article  Google Scholar 

  132. Ting TO, Rao MVC, Loo CK (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst 21(1):411–418

    Article  Google Scholar 

  133. Vlachogiannis JG, Lee KY (2009) Economic load dispatch-A comparative study on heuristic optimization techniques with an improved coordinated aggregation-based PSO. IEEE Trans Power Syst 24(2):991–1001

    Article  Google Scholar 

  134. Meng K, Wang HG, Dong Z, Wong KP (2009) Quantum-inspired particle swarm optimization for valve-point economic load dispatch. IEEE Trans Power Syst 25(1):215–222

    Article  Google Scholar 

  135. Wang L, Singh C (2007) Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm. Electr Power Syst Res 77(12):1654–1664

    Article  Google Scholar 

  136. Wu LH, Wang YN, Yuan XF, Zhou SW (2010) Environmental/economic power dispatch problem using multi-objective differential evolution algorithm. Electr Power Syst Res 80(9):1171–1181

    Article  Google Scholar 

  137. Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Int J Electr Power Energy Syst 28(7):482–490

    Article  Google Scholar 

  138. Mahadevan K, Kannan PS (2010) Comprehensive learning particle swarm optimization for reactive power dispatch. Appl Soft Comput 10(2):641–652

    Article  Google Scholar 

  139. Jeyakumar DN, Jayabarathi T, Raghunathan T (2006) Particle swarm optimization for various types of economic dispatch problems. Int J Electr Power Energy Syst 28(1):36–42

    Article  Google Scholar 

  140. Chaturvedi KT, Pandit M, Srivastava L (2009) Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch. Int J Electr Power Energy Syst 31(6):249–257

    Article  Google Scholar 

  141. Kuo CC (2008) A novel coding scheme for practical economic dispatch by modified particle swarm approach. IEEE Trans Power Syst 23(4):1825–1835

    Article  Google Scholar 

  142. Park JB, Jeong YW, Shin JR, Lee KY (2009) An improved particle swarm optimization for nonconvex economic dispatch problems. IEEE Trans Power Syst 25(1):156–166

    Article  Google Scholar 

  143. Jiang S, Ji Z, Shen Y (2014) A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. Int J Electr Power Energy Syst 55:628–644

    Article  Google Scholar 

  144. Wang L, Singh C (2006) Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization. In: 2006 IEEE power engineering society general meeting (pp. 8-pp). IEEE

  145. Kumar R, Sharma D, Sadu A (2011) A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch. Int J Electr Power Energy Syst 33(1):115–123

    Article  Google Scholar 

  146. Wang L, Singh C (2008) Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization. Electr Power Syst Res 78(8):1361–1368

    Article  Google Scholar 

  147. Wang L, Singh C (2008) Stochastic economic emission load dispatch through a modified particle swarm optimization algorithm. Electr Power Syst Res 78(8):1466–1476

    Article  Google Scholar 

  148. Safari A, Shayeghi H (2011) Iteration particle swarm optimization procedure for economic load dispatch with generator constraints. Expert Syst Appl 38(5):6043–6048

    Article  Google Scholar 

  149. Zhisheng Z (2010) Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system. Expert Syst Appl 37(2):1800–1803

    Article  Google Scholar 

  150. Neyestani M, Farsangi MM, Nezamabadi-Pour H (2010) A modified particle swarm optimization for economic dispatch with non-smooth cost functions. Eng Appl Artif Intell 23(7):1121–1126

    Article  Google Scholar 

  151. Mandal KK, Chakraborty N (2012) Daily combined economic emission scheduling of hydrothermal systems with cascaded reservoirs using self organizing hierarchical particle swarm optimization technique. Expert Syst Appl 39(3):3438–3445

    Article  Google Scholar 

  152. Azadani EN, Hosseinian SH, Moradzadeh B (2010) Generation and reserve dispatch in a competitive market using constrained particle swarm optimization. Int J Electr Power Energy Syst 32(1):79–86

    Article  Google Scholar 

  153. Duman S, Yorukeren N, Altas IH (2015) A novel modified hybrid PSOGSA based on fuzzy logic for non-convex economic dispatch problem with valve-point effect. Int J Electr Power Energy Syst 64:121–135

    Article  Google Scholar 

  154. Hamedi H (2013) Solving the combined economic load and emission dispatch problems using new heuristic algorithm. Int J Electr Power Energy Syst 46:10–16

    Article  Google Scholar 

  155. Chakraborty S, Ito T, Senjyu T, Saber AY (2012) Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm. Int J Electr Power Energy Syst 43(1):1072–1080

    Article  Google Scholar 

  156. de Fátima Araújo T, Uturbey W (2013) Performance assessment of PSO, DE and hybrid PSO-DE algorithms when applied to the dispatch of generation and demand. Int J Electr Power Energy Syst 47:205–217

    Article  Google Scholar 

  157. Yu X, Zhang X (2014) Unit commitment using Lagrangian relaxation and particle swarm optimization. Int J Electr Power Energy Syst 61:510–522

    Article  Google Scholar 

  158. Kumar R, Sadu A, Kumar R, Panda SK (2012) A novel multi-objective directed bee colony optimization algorithm for multi-objective emission constrained economic power dispatch. Int J Electr Power Energy Syst 43(1):1241–1250

    Article  Google Scholar 

  159. Pandit M, Chaudhary V, Dubey HM, Panigrahi BK (2015) Multi-period wind integrated optimal dispatch using series PSO-DE with time-varying Gaussian membership function based fuzzy selection. Int J Electr Power Energy Syst 73:259–272

    Article  Google Scholar 

  160. Abbas G, Gu J, Farooq U, Asad MU, El-Hawary M (2017) Solution of an economic dispatch problem through particle swarm optimization: a detailed survey-part I. IEEE Access 5:15105–15141

    Article  Google Scholar 

  161. Debnath UK, Ahmad I, Habibi D, Saber AY (2015) Energy storage model with gridable vehicles for economic load dispatch in the smart grid. Int J Electr Power Energy Syst 64:1017–1024

    Article  Google Scholar 

  162. Rao BS, Vaisakh K (2013) Multi-objective adaptive clonal selection algorithm for solving environmental/economic dispatch and OPF problems with load uncertainty. Int J Electr Power Energy Syst 53:390–408

    Article  Google Scholar 

  163. Radosavljević J (2016) A solution to the combined economic and emission dispatch using hybrid PSOGSA algorithm. Appl Artif Intell 30(5):445–474

    Article  Google Scholar 

  164. Baskar G, Mohan MR (2009) Contingency constrained economic load dispatch using improved particle swarm optimization for security enhancement. Electr Power Syst Res 79(4):615–621

    Article  Google Scholar 

  165. Chen YM, Wang WS (2010) Environmentally constrained economic dispatch using Pareto archive particle swarm optimisation. Int J Syst Sci 41(5):593–605

    Article  MATH  Google Scholar 

  166. Bahmanifirouzi B, Farjah E, Niknam T (2012) Multi-objective stochastic dynamic economic emission dispatch enhancement by fuzzy adaptive modified theta particle swarm optimization. J Renew Sustain Energy 4(2):023105

    Article  Google Scholar 

  167. Tungadio DH, Numbi BP, Siti MW, Jimoh AA (2015) Particle swarm optimization for power system state estimation. Neurocomputing 148:175–180

    Article  Google Scholar 

  168. Ahmadi A, Alinejad-Beromi Y, Moradi M (2011) Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy. Expert Syst Appl 38(6):7263–7269

    Article  Google Scholar 

  169. Kassabalidis IN, El-Sharkawi MA, Marks RJ, Moulin LS, Da Silva AA (2002) Dynamic security border identification using enhanced particle swarm optimization. IEEE Trans Power Syst 17(3):723–729

    Article  Google Scholar 

  170. Hu L, Wang Z, Rahman I, Liu X (2015) A constrained optimization approach to dynamic state estimation for power systems including PMU and missing measurements. IEEE Trans Control Syst Technol 24(2):703–710

    Google Scholar 

  171. Esmaeilian HR, Fadaeinedjad R (2015) Distribution system efficiency improvement using network reconfiguration and capacitor allocation. Int J Electr Power Energy Syst 64:457–468

    Article  Google Scholar 

  172. Abd Rahman NH, Zobaa AF (2017) Integrated mutation strategy with modified binary PSO algorithm for optimal PMUs placement. IEEE Trans Ind Inf 13(6):3124–3133

    Article  Google Scholar 

  173. Mishra C, Jones KD, Pal A, Centeno VA (2016) Binary particle swarm optimisation-based optimal substation coverage algorithm for phasor measurement unit installations in practical systems. IET Gener Transm Distrib 10(2):555–562

    Article  Google Scholar 

  174. Wang L, Singh C (2009) Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Trans Energy Convers 24(1):163–172

    Article  Google Scholar 

  175. AlRashidi MR, El-Hawary ME (2007) Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects. IEEE Trans Power Syst 22(4):2030–2038

    Article  Google Scholar 

  176. El-Zonkoly AM (2011) Optimal placement of multi-distributed generation units including different load models using particle swarm optimization. Swarm Evol Comput 1(1):50–59

    Article  Google Scholar 

  177. Niknam T, Kavousifard A, Aghaei J (2012) Scenario-based multiobjective distribution feeder reconfiguration considering wind power using adaptive modified particle swarm optimisation. IET Renew Power Gener 6(4):236–247

    Article  Google Scholar 

  178. Liang RH, Tsai SR, Chen YT, Tseng WT (2011) Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr Power Syst Res 81(7):1466–1474

    Article  Google Scholar 

  179. Siano P, Mokryani G (2013) Assessing wind turbines placement in a distribution market environment by using particle swarm optimization. IEEE Trans Power Syst 28(4):3852–3864

    Article  Google Scholar 

  180. Umapathy, P., Venkataseshaiah, C., & Arumugam, M. S. (2010). Particle swarm optimization with various inertia weight variants for optimal power flow solution. Discrete Dyn Nat Soc

  181. Ting TO, Wong KP, Chung CY (2008) Hybrid constrained genetic algorithm/particle swarm optimisation load flow algorithm. IET Gener Transm Distrib 2(6):800–812

    Article  Google Scholar 

  182. Hong YY, Lin FJ, Lin YC, Hsu FY (2013) Chaotic PSO-based VAR control considering renewables using fast probabilistic power flow. IEEE Trans Power Deliv 29(4):1666–1674

    Article  Google Scholar 

  183. Ruiz-Rodriguez FJ, Gomez-Gonzalez M, Jurado F (2011) Binary particle swarm optimization for optimization of photovoltaic generators in radial distribution systems using probabilistic load flow. Electric Power Components and Systems 39(15):1667–1684

    Article  Google Scholar 

  184. Mansour MM, Mekhamer SF, El-Kharbawe N (2007) A modified particle swarm optimizer for the coordination of directional overcurrent relays. IEEE Trans Power Deliv 22(3):1400–1410

    Article  Google Scholar 

  185. El-Zonkoly AM (2011) Optimal placement of multi-distributed generation units including different load models using particle swarm optimisation. IET Gener Transm Distrib 5(7):760–771

    Article  Google Scholar 

  186. Hazra J, Sinha AK (2007) Congestion management using multiobjective particle swarm optimization. IEEE Trans Power Syst 22(4):1726–1734

    Article  Google Scholar 

  187. Kerdphol T, Fuji K, Mitani Y, Watanabe M, Qudaih Y (2016) Optimization of a battery energy storage system using particle swarm optimization for stand-alone microgrids. Int J Electr Power Energy Syst 81:32–39

    Article  Google Scholar 

  188. AlRashidi MR, El-Naggar KM (2010) Long term electric load forecasting based on particle swarm optimization. Appl Energy 87(1):320–326

    Article  Google Scholar 

  189. Sun C, Lu S (2010) Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization. Expert Syst Appl 37(6):4232–4241

    Article  Google Scholar 

  190. Kalyani S, Swarup KS (2011) Particle swarm optimization based K-means clustering approach for security assessment in power systems. Expert Syst Appl 38(9):10839–10846

    Article  Google Scholar 

  191. Upendar J, Gupta CP, Singh GK, Ramakrishna G (2010) PSO and ANN-based fault classification for protective relaying. IET Gener Transm Distrib 4(10):1197–1212

    Article  Google Scholar 

  192. Hilber P, Miranda V, Matos MA, Bertling L (2007) Multiobjective optimization applied to maintenance policy for electrical networks. IEEE Trans Power Syst 22(4):1675–1682

    Article  Google Scholar 

  193. Wang J, Yang F (2013) Optimal capacity allocation of standalone wind/solar/battery hybrid power system based on improved particle swarm optimisation algorithm. IET Renew Power Gener 7(5):443–448

    Article  Google Scholar 

  194. Miranda V, de Magalhaes Carvalho L, Da Rosa MA, Da Silva AML, Singh C (2009) Improving power system reliability calculation efficiency with EPSO variants. IEEE Trans Power Syst 24(4):1772–1779

    Article  Google Scholar 

  195. Vlachogiannis JG, Lee KY (2005) Determining generator contributions to transmission system using parallel vector evaluated particle swarm optimization. IEEE Trans Power Syst 20(4):1765–1774

    Article  Google Scholar 

  196. El-Dib AA, Youssef HK, El-Metwally MM, Osman Z (2006) Maximum loadability of power systems using hybrid particle swarm optimization. Electr Power Syst Res 76(6–7):485–492

    Article  Google Scholar 

  197. Zhang R, Zhou J, Ouyang S, Wang X, Zhang H (2013) Optimal operation of multi-reservoir system by multi-elite guide particle swarm optimization. Int J Electr Power Energy Syst 48:58–68

    Article  Google Scholar 

  198. El-Zonkoly A, Saad M, Khalil R (2013) New algorithm based on CLPSO for controlled islanding of distribution systems. Int J Electr Power Energy Syst 45(1):391–403

    Article  Google Scholar 

  199. Suresh K, Kumarappan N (2013) Hybrid improved binary particle swarm optimization approach for generation maintenance scheduling problem. Swarm Evol Comput 9:69–89

    Article  Google Scholar 

  200. Yare Y, Venayagamoorthy GK (2010) Optimal maintenance scheduling of generators using multiple swarms-MDPSO framework. Eng Appl Artif Intell 23(6):895–910

    Article  Google Scholar 

  201. Farzinfar M, Jazaeri M, Razavi F (2014) A new approach for optimal coordination of distance and directional over-current relays using multiple embedded crossover PSO. Int J Electr Power Energy Syst 61:620–628

    Article  Google Scholar 

  202. Moghddas-Tafreshi SM, Shayanfar HA, Lahiji AS, Rabiee A, Aghaei J (2011) Generation expansion planning in Pool market: a hybrid modified game theory and particle swarm optimization. Energy Convers Manag 52(2):1512–1519

    Article  Google Scholar 

  203. Selvakumar AI (2013) Civilized swarm optimization for multiobjective short-term hydrothermal scheduling. Int J Electr Power Energy Syst 51:178–189

    Article  Google Scholar 

  204. Eghbal M, Yorino N, El-Araby EE, Zoka Y (2008) Multi-load level reactive power planning considering slow and fast VAR devices by means of particle swarm optimisation. IET Gener Transm Distrib 2(5):743–751

    Article  Google Scholar 

  205. Li R, Ma H, Wang F, Wang Y, Liu Y, Li Z (2013) Game optimization theory and application in distribution system expansion planning, including distributed generation. Energies 6(2):1101–1124

    Article  Google Scholar 

  206. Hinojosa VH, Leyton C (2012) Short-term hydrothermal generation scheduling solved with a mixed-binary evolutionary particle swarm optimizer. Electr Power Syst Res 92:162–170

    Article  Google Scholar 

  207. Kannan SMRSS, Slochanal SMR, Baskar S, Murugan P (2007) Application and comparison of metaheuristic techniques to generation expansion planning in the partially deregulated environment. IET Gener Transm Distrib 1(1):111–118

    Article  Google Scholar 

  208. Ramezani M, Haghifam MR, Singh C, Seifi H, Moghaddam MP (2008) Determination of capacity benefit margin in multiarea power systems using particle swarm optimization. IEEE Trans Power Syst 24(2):631–641

    Article  Google Scholar 

  209. Zhang Y, Yao F, Iu HHC, Fernando T, Wong KP (2013) Sequential quadratic programming particle swarm optimization for wind power system operations considering emissions. J Mod Power Syst Clean Energy 1(3):227–236

    Article  Google Scholar 

  210. Yang MT, Liu A (2013) Applying hybrid PSO to optimize directional overcurrent relay coordination in variable network topologies. J Appl Math

  211. Manousakis NM, Korres GN, & Georgilakis PSA Detailed bibliographic analysis of optimal PMU placement problem in conventional power systems and in smart grids. Energy 2:9

  212. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization Algorithm. Comput Ind Eng 157:107250

    Article  Google Scholar 

  213. Yousif S, & Saka MP (2021) Enhanced beetle antenna search: a swarm intelligence algorithm. Asian J Civ Eng 1–35

  214. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  215. Eid A, Kamel S, & Abualigah L (2021) Marine predators algorithm for optimal allocation of active and reactive power resources in distribution networks. Neural Comput Appl 1–29

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukriti Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Kumar, A. Advances and bibliographic analysis of particle swarm optimization applications in electrical power system: concepts and variants. Evol. Intel. 16, 23–47 (2023). https://doi.org/10.1007/s12065-021-00661-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00661-3

Keywords

Navigation