Skip to main content
Log in

A new improved salp swarm algorithm using logarithmic spiral mechanism enhanced with chaos for global optimization

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Recently, salp swarm algorithm (SSA) has emerged as a new population-based meta-heuristic technique in the area of optimization. It is mainly inspired from the navigating and foraging behaviour of salp swarms. The aforementioned algorithm weakness is stagnation in local optima and low convergence rate. To overcome these drawbacks, we proposed a new improved spiral chaotic salp swarm algorithm called ISC-SSA. Compared with original SSA, ISC-SSA includes logarithmic spiral mechanism incorporated with chaotic search methods capabilities to enhance further its performance. The functionality of ISC-SSA algorithm is firstly tested on 20 unimodal, multimodal and composite mathematical optimization problems with ten different chaotic maps to select the most appropriate one for ISC-SSA modification. Then, the algorithm is applied to solve several engineering optimization problems. The comparative experimental results with competitive metaheuristic algorithms reveal that ISC-SSA algorithm can generate the best solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang X-S (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley

    Book  Google Scholar 

  2. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Beckington

    Google Scholar 

  3. Holland JH (1992) Genetic algorithms. Sci Am 267:66–73

    Article  Google Scholar 

  4. Koza JR, Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  5. Beyer H-G, Schwefel H-P (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1:3–52

    Article  MathSciNet  MATH  Google Scholar 

  6. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  7. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713

    Article  Google Scholar 

  8. Dorigo M, Colorni A, Maniezzo V (1991) Distributed optimization by ant colonies. Elsevier, Amsterdam

    Google Scholar 

  9. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  10. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer

  11. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. arXiv Prepr arXiv: 10031409

  12. Askarzadeh A (2014) Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Commun Nonlinear Sci Numer Simul 19:1213–1228

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

  14. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  15. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  16. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214

  17. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  18. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  19. Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin echolocation. Adv Eng Softw 59:53–70

    Article  Google Scholar 

  20. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  21. Harifi S, Khalilian M, Mohammadzadeh J, Ebrahimnejad S (2019) Emperor Penguins Colony: a new metaheuristic algorithm for optimization. Evol Intell 12:211–226

    Article  Google Scholar 

  22. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  23. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science (80-) 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  24. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  25. Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation

  26. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  27. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179:2232–2248

    Article  MATH  Google Scholar 

  28. Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180

    Article  Google Scholar 

  29. Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  30. Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: International conference on natural computation. Springer, pp 264–273

  31. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci (Ny) 222:175–184

    Article  MathSciNet  Google Scholar 

  32. Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6:132–140

    Google Scholar 

  33. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Article  Google Scholar 

  34. Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv Prepr arXiv: 12082214

  35. Bairathi D, Gopalani D (2019) Numerical optimization and feed-forward neural networks training using an improved optimization algorithm: multiple leader salp swarm algorithm. Evol Intell. https://doi.org/10.1007/s12065-019-00269-8

    Article  Google Scholar 

  36. Ahmed S, Mafarja M, Faris H, Aljarah I (2018) Feature selection using salp swarm algorithm with chaos. In: Proceedings of the 2nd international conference on intelligent systems, metaheuristics & swarm intelligence, pp 65–69

  37. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48:3462–3481

    Article  Google Scholar 

  38. Kaveh A (2014) Advances in metaheuristic algorithms for optimal design of structures. Springer

    Book  MATH  Google Scholar 

  39. Berliner LM (1992) Statistics, probability and chaos. Stat Sci 7(1):69–90

    Article  MathSciNet  MATH  Google Scholar 

  40. Schuster HG, Just W (2006) Deterministic chaos: an introduction. Wiley

    MATH  Google Scholar 

  41. Eubank S, Farmer D (1990) An introduction to chaos and randomness. In: 1989 lectures in complex systems. Proceedings: lectures, vol 2

  42. Gharooni-fard G, Moein-darbari F, Deldari H, Morvaridi A (2010) Scheduling of scientific workflows using a chaos-genetic algorithm. Procedia Comput Sci 1:1445–1454

    Article  Google Scholar 

  43. Gandomi AH, Yun GJ, Yang X-S, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18:327–340

    Article  MathSciNet  MATH  Google Scholar 

  44. Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216:2687–2699

    MATH  Google Scholar 

  45. Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687

    Article  Google Scholar 

  46. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25:1077–1097

    Article  Google Scholar 

  47. Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18:89–98

    Article  MathSciNet  MATH  Google Scholar 

  48. Mingjun J, Huanwen T (2004) Application of chaos in simulated annealing. Chaos Solitons Fractals 21:933–941

    Article  MATH  Google Scholar 

  49. Saremi S, Mirjalili SM, Mirjalili S (2014) Chaotic krill herd optimization algorithm. Procedia Technol 12:180–185

    Article  Google Scholar 

  50. Gandomi AH, Yang X-S (2014) Chaotic bat algorithm. J Comput Sci 5:224–232

    Article  MathSciNet  Google Scholar 

  51. dos Santos CL, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34:1905–1913

    Article  Google Scholar 

  52. Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5:275–284

    Google Scholar 

  53. Tavazoei MS, Haeri M (2007) An optimization algorithm based on chaotic behavior and fractal nature. J Comput Appl Math 206:1070–1081

    Article  MathSciNet  MATH  Google Scholar 

  54. Ibrahim RA, Elaziz MA, Lu S (2018) Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Syst Appl 108:1–27

    Article  Google Scholar 

  55. Wang G-G, Guo L, Gandomi AH et al (2014) Chaotic krill herd algorithm. Inf Sci (Ny) 274:17–34

    Article  MathSciNet  Google Scholar 

  56. Arora S, Singh S (2017) An improved butterfly optimization algorithm with chaos. J Intell Fuzzy Syst 32:1079–1088

    Article  MATH  Google Scholar 

  57. Banks J, Brooks J, Cairns G et al (1992) On Devaney’s definition of chaos. Am Math Mon 99:332–334

    Article  MathSciNet  MATH  Google Scholar 

  58. Fotiou A (2005) Deterministic chaos. MSc Univ London, Queen Mary Westf Coll Sch Math Sci

  59. Heidari-Bateni G, McGillem CD (1994) A chaotic direct-sequence spread-spectrum communication system. IEEE Trans Commun 42:1524–1527

    Article  Google Scholar 

  60. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  Google Scholar 

  61. Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77:481–506

    Article  MathSciNet  MATH  Google Scholar 

  62. Liang J-J, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings 2005 IEEE swarm intelligence symposium, 2005. SIS 2005. IEEE, pp 68–75

  63. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

  64. Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, pp 240–249

  65. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99

    Article  Google Scholar 

  66. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16:193–203

    Article  Google Scholar 

  67. Zhang Z, Ding S, Jia W (2019) A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng Appl Artif Intell 85:254–268

    Article  Google Scholar 

  68. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116:405–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diab Mokeddem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Tables

Table 26 Unimodal and multimodal benchmark functions

26 and

Table 27 Composite benchmark functions

27 show the details of unimodal, multimodal and composite test functions employed in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokeddem, D. A new improved salp swarm algorithm using logarithmic spiral mechanism enhanced with chaos for global optimization. Evol. Intel. 15, 1745–1775 (2022). https://doi.org/10.1007/s12065-021-00587-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00587-w

Keywords

Navigation