Skip to main content
Log in

FAB classification of acute leukemia using an ensemble of neural networks

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Acute leukemia is the most frequently occurring malignancy present in human blood and a kind of liquid cancer. This hematological disorder can impinge on bone marrow and lymphatic system. Accordingly, a computer-aided classification system is proposed for French–American–British classification of Acute Leukemia using an ensemble of neural networks which is validated on 180 microscopic blood images taken from online benchmark dataset. As per the requirement of pathologists in real-life examination scenario various objectives are formulated as (i) correct nucleus segmentation in blood cell image, (ii) correct classification of FAB classes of acute leukemia (L1, L2, L3, M2, M3, and M5). To accomplish these research objectives the proposed method consist of segmentation section, feature extraction section, feature pruning section and classification section. The classification of the proposed method consists of two subsections as subsection1 is comprised of single six class PCA based neural network as PCA-NN0 (L1/L2/L3/M2/M3/M5) and subsection 2 contains an ensemble of 15 binary PCA based neural network classifiers as PCA-NN1 (L1/L2), PCA-NN2(L1/L3), PCA-NN3(L1/M2), PCA-NN4(L1/M3), PCA-NN5(L1/M5), PCA-NN6(L2/L3), PCA-NN7(L2/M2), PCA-NN8(L2/M3), PCA-NN9(L2/M5), PCA-NN10(L3/M2), PCA-NN11(L3/M3), PCA-NN12(L3/M5), PCA-NN13(M2/M3), PCA-NN14(M2/M5), PCA-NN15(M3/M5). The achieved accuracy for experiment 1 is 86.4% using PCA-NN0. The output of two most plausible classes predicted by PCA-NN0 is passed to other binary PCA based neural network i.e. PCA-NN1 to PCA-NN15. After passing all the test images to subsection 2, the achieved accuracy is 94.2% from the exhaustive experiment 2. The outcome of the work verifies the capabilities of computer-aided classification system to substitute the conventional diagnostic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bain BJ, Bates I, Laffan MA (2016) Dacie and lewis practical haematology e-book. Elsevier Health Sciences

  2. Online source: Khan Academy. Inc., a 501(c) (3) organization

  3. Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS (2017) Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers. Multimed Tools Appl 76(18):19057–19085

    Google Scholar 

  4. Pedreira CE, Macrini L, Land MG, Costa ES (2009) New decision support tool for treatment intensity choice in childhood acute lymphoblastic leukemia. IEEE Trans Inf Technol B 13(3):284–290

    Google Scholar 

  5. Viswanathan P, Fuzzy C (2015) Means detection of leukemia based on morphological contour segmentation. Proc Comput Sci 31(58):84–90

    Google Scholar 

  6. Singh G, Bathla G, Kaur S (2016) Design of new architecture to detect leukemia cancer from medical images. Int J Appl Eng Res 11(10):7087–7094

    Google Scholar 

  7. Zhang L, Wang QG, Qi JP (2006) Processing technology in microscopic images of cancer cells in pleural fluid based on fuzzy edge detection method. J Phys: Conf Series 48(1):329

    Google Scholar 

  8. Amin MM, Kermani S, Talebi A, Oghli MG (2015) Recognition of acute lymphoblastic leukemia cells in microscopic images using K-means clustering and support vector machine classifier. J Med Signals Sens 5(1):49

    Google Scholar 

  9. Neoh SC, Srisukkham W, Zhang L, Todryk S, Greystoke B, Lim CP, Hossain MA, Aslam N (2015) An intelligent decision support system for leukaemia diagnosis using microscopic blood images. Sc Rep 5:14938

    Google Scholar 

  10. Nasir AA, Mashor MY, Hassan R (2013) Classification of acute leukaemia cells using multilayer perceptron and simplified fuzzy ARTMAP neural networks. Int Arab J Inform Technol 10(4):356–364

    Google Scholar 

  11. Bhattacharjee R, Saini LM (2015) Robust technique for the detection of Acute Lymphoblastic Leukemia. In: 2015 IEEE power, communication and information technology conference (PCITC) 15 Oct 2015, pp 657–662. IEEE

  12. Mohapatra S, Patra D (2010) Automated cell nucleus segmentation and acute leukemia detection in blood microscopic images. In: Systems in medicine and biology (ICSMB), 2010 international conference on 16 Dec 2010, pp 49–54. IEEE

  13. Mohapatra S, Patra D (2010) Automated leukemia detection using hausdorff dimension in blood microscopic images. In: Emerging trends in robotics and communication technologies (INTERACT), 2010 International conference on 3 Dec 2010, pp 64–68. IEEE

  14. Mohapatra S, Patra D, Satpathy S (2014) An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Comput Appl 24(7–8):1887–1904

    Google Scholar 

  15. Singhal V, Singh P (2016) Texture features for the detection of acute lymphoblastic leukemia. In: Proceedings of international conference on ict for sustainable development 2016. Springer, Singapore, pp 535–543

  16. Mohapatra S, Patra D, Kumar S, Satpathy S (2012) Lymphocyte image segmentation using functional link neural architecture for acute leukemia detection. Biomed Eng Lett 2(2):100–110

    Google Scholar 

  17. Madhloom HT, Kareem SA, Ariffin H (2012) A robust feature extraction and selection method for the recognition of Lymphocytes versus acute Lymphoblastic Leukemia. In: Advanced computer science applications and technologies (ACSAT), 2012 international conference on 26 Nov 2012, pp 330–335. IEEE

  18. Putzu L, Caocci G, Di Ruberto C (2014) Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med 62(3):179–191

    Google Scholar 

  19. Putzu L, Di Ruberto C (2013) White blood cells identification and classification from leukemic blood image. In: Proceedings of the IWBBIO international work-conference on bioinformatics and biomedical engineering, 2013 Mar, pp 99–106

  20. Rawat J, Singh A, Bhadauria HS, Virmani J (2015) Computer aided diagnostic system for detection of leukemia using microscopic images. Proc Comput Sci 31(70):748–756

    Google Scholar 

  21. Scotti F (2005) Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. In: 2005 IEEE international conference on computational intelligence for measurement systems and applications, 20 Jul 2005, vol 2005, pp 96–101

  22. Goutam D, Sailaja S (2015) Classification of acute myelogenous leukemia in blood microscopic images using supervised classifier. In: Engineering and technology (ICETECH), 2015 IEEE international conference on 20 Mar 2015, pp 1–5. IEEE

  23. Agaian S, Madhukar M, Chronopoulos AT (2014) Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Syst J 8(3):995–1004

    Google Scholar 

  24. Priya DK, Krithiga SR, Pavithra P, Kumar JR (2015) Detection of leukemia in blood microscopic images using fuzzy logic. Int J Engg Res Sci Tech 240:197–205

    Google Scholar 

  25. Kazemi F, Najafabadi TA, Araabi BN (2016) Automatic recognition of acute myelogenous leukemia in blood microscopic images using K-means clustering and support vector machine. J Med Signals Sens 6(3):183

    Google Scholar 

  26. Madhloom HT, Kareem SA, Ariffin H (2015) Computer-aided acute leukemia blast cells segmentation in peripheral blood images. J Vibroeng 17(8):4517–4532

    Google Scholar 

  27. Belacel N, Vincke P, Scheiff JM, Boulassel MR (2001) Acute leukemia diagnosis aid using multicriteria fuzzy assignment methodology. Comput Methods Prog Bio 64(2):145–151

    Google Scholar 

  28. Gonzalez JA, Olmos I, Altamirano L, Morales BA, Reta C, Galindo MC, Alonso JE, Lobato R (2011) Leukemia identification from bone marrow cells images using a machine vision and data mining strategy. Intell Data Anal 15(3):443–462

    Google Scholar 

  29. Reta C, Altamirano L, Gonzalez JA, Diaz-Hernandez R, Peregrina H, Olmos I, Alonso JE, Lobato R (2015) Correction: segmentation and classification of bone marrow cells images using contextual information for medical diagnosis of acute leukemias. PLoS ONE 10(7):e0134066

    Google Scholar 

  30. Bigorra L, Merino A, Alferez S, Rodellar J (2017) Feature analysis and automatic identification of leukemic lineage blast cells and reactive lymphoid cells from peripheral blood cell images. J Clin Lab Anal 31(2):e22024

    Google Scholar 

  31. ASH Image Bank: American Society of Hematology. https://imagebank.hematology.org

  32. Labati RD, Piuri V and Scotti F (2011) All-IDB: the acute lymphoblastic leukemia image database for image processing. In: Image processing (ICIP), 2011 18th IEEE international conference on, pp 2045–2048. IEEE

  33. Rawat J, Singh A and Bhadauria HS (2014). An approach for leukocytes nuclei segmentation based on image fusion. In: Signal processing and information technology (ISSPIT), 2014 IEEE international symposium on, pp 000456–000461. IEEE

  34. Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Google Scholar 

  35. Laws KI (1980). Rapid texture identification. In:  24th annual technical symposium, pp 376–381. International Society for Optics and Photonics

  36. Lee CC and Chen SH (2006). Gabor wavelets and SVM classifier for liver diseases classiflcation from CT images. In: 2006 IEEE international conference on systems, man and cybernetics, vol 1, pp 548–552. IEEE

  37. Mingqiang Y, Kidiyo K, Joseph R (2008) A survey of shape feature extraction techniques. Pattern Recogn 15(7):43–90

    Google Scholar 

  38. Bengtsson T (2008) Classification of cell images using MPEG-7-influenced descriptors and support vector machines in cell morphology. Institutionen för datavetenskap, Lundsuniversitet

    Google Scholar 

  39. Chris A, Mulyawan B (2012) A combination of feature selection and co-occurrence matrix methods for leukocyte recognition system. J Softw Eng Appl 5:101

    Google Scholar 

  40. Rawat J, Bhadauria HS, Singh A and Virmani J (2015). Review of leukocyte classification techniques for microscopic blood images. In: Computing for sustainable global development (INDIACom), 2015 2nd International Conference on, pp 1948–1954. IEEE

  41. Kriti, Virmani J (2015) Breast density classification using Laws' mask texture features. Int J Biomed Eng Technol 19(3):279–302

    Google Scholar 

  42. Han ZY, Gu DH, Wu QE (2016) Feature extraction for color images. Electronics communications and networks. Springer, Singapore, pp 215–221

    Google Scholar 

  43. Khan S, Hussain M, Aboalsamh H, Bebis G (2017) A comparison of different Gabor feature extraction approaches for mass classification in mammography. Multimed Tools Appl 76(1):33–57

    Google Scholar 

  44. Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS (2018) Application of ensemble artificial neural network for the classification of white blood cells using microscopic blood images. Int J Comput Syst Eng 4(2–3):202–216

    Google Scholar 

  45. Cornfield JEROME (1972) Statistical classification methods. In: Proceedings of the second conference on the diagnostic process, computer diagnosis and diagnostic methods, Chicago, pp 108–130

  46. Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice hall, New Jersey

    MATH  Google Scholar 

  47. Fukunaga K (2013) Introduction to statistical pattern recognition. Elsevier, Amsterdam

    MATH  Google Scholar 

  48. Jiang J, Trundle P, Ren J (2010) Medical image analysis with artificial neural networks. Comput Med Imaging Graph 34(8):617–631

    Google Scholar 

  49. Virmani J, Kumar V, Kalra N, Khandelwal N (2014) Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound. J Digit Imaging 27(4):520–537

    Google Scholar 

  50. Singh PP and Garg RD (2011) Land use and land cover classification using satellite imagery: a hybrid classifier and neural network approach. In: Proceedings of international conference on advances in modeling, optimization and computing (AMOC-2011), pp 753–762

  51. Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS (2017) Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybern Biomed Eng 37(4):637–654

    Google Scholar 

  52. Rawat J, Singh A, Bhadauria HS and Kumar I (2014). Comparative analysis of segmentation algorithms for leukocyte extraction in the acute Lymphoblastic Leukemia images. In: Parallel, distributed and grid computing (PDGC), 2014 international conference on, pp 245–250. IEEE

  53. Kurita T, Otsu N, Abdelmalek N (1992) Maximum likelihood thresholding based on population mixture models. Pattern Recogn 25(10):1231–1240

    Google Scholar 

  54. Kwon SH (2004) Threshold selection based on cluster analysis. Pattern Recogn Lett 25(9):1045–1050

    Google Scholar 

  55. Bieniek A, Moga A (2000) An efficient watershed algorithm based on connected components. Pattern Recogn 33(6):907–916

    Google Scholar 

  56. Saarinen K (1994). Color image segmentation by a watershed algorithm and region adjacency graph processing. In: Image processing, 1994. Proceedings. ICIP-94., IEEE international conference, vol 3, pp 1021–1025

  57. Rawat J, Singh A, Bhadauria HS, Virmani J (2015) Computer aided diagnostic system for detection of leukemia using microscopic images. Proc Comput Sci 70:748–756

    Google Scholar 

  58. Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS (2017) Leukocyte classification using adaptive neuro-fuzzy inference system in microscopic blood images. Arab J Sci Eng 8:1–18

    Google Scholar 

  59. Ladines-Castro W, Barragan-Ibanez G, Luna-Perez MA, Santoyo-Sanchez A, Collazo-Jaloma J, Mendoza-García E, Ramos-Penafiel CO (2016) Morphology of leukaemias. Rev Med Hosp Gener de Mex 79(2):107–113

    Google Scholar 

  60. El Houby EM (2018) Framework of computer aided diagnosis systems for cancer classification based on medical images. J Med Syst 42(8):157

    Google Scholar 

  61. Alsalem MA, Zaidan AA, Zaidan BB, Albahri OS, Alamoodi AH, Albahri AS, Mohsin AH, Mohammed KI (2019) Multiclass benchmarking framework for automated acute Leukaemia detection and classification based on BWM and group-VIKOR. J Med Syst 43(7):212

    Google Scholar 

  62. Kurniadi FI, Putri VK (2019) A comparison of human crafted features and machine crafted features on white blood cells classification. J Phys: Conf Series 1201(1):012045

    Google Scholar 

  63. Salman OH, Zaidan AA, Zaidan BB, Naserkalid, Hashim M (2017) Novel methodology for triage and prioritizing using “big data” patients with chronic heart diseases through telemedicine environmental. Int J Inform Technol Decis Making 16(05):1211–1245

    Google Scholar 

  64. Kalid N, Zaidan AA, Zaidan BB, Salman OH, Hashim M, Albahri OS, Albahri AS (2018) Based on real time remote health monitoring systems: A new approach for prioritization “large scales data” patients with chronic heart diseases using body sensors and communication technology. J Med Syst 42(4):69

    Google Scholar 

  65. Mohsin AH, Zaidan AA, Zaidan BB, Albahri OS, Albahri AS, Alsalem MA, Mohammed KI (2019) Based medical systems for patient’s authentication: Towards a new verification secure framework using CIA standard. J Med Syst 43(7):192

    Google Scholar 

  66. Mohsin AH, Zaidan AA, Zaidan BB, bin Ariffin SA, Albahri OS, Albahri AS, Alsalem MA, Mohammed KI, Hashim M (2018) Real-time medical systems based on human biometric steganography: a systematic review. J Med Syst 42(12):245

    Google Scholar 

  67. Albahri OS, Albahri AS, Mohammed KI, Zaidan AA, Zaidan BB, Hashim M, Salman OH (2018) Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: taxonomy, open challenges, motivation and recommendations. J Med Syst 42(5):80

    Google Scholar 

  68. Liang G, Hong H, Xie W, Zheng L (2018) Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 6:36188–36197

    Google Scholar 

  69. Macawile MJ, Quiñones VV, Ballado A, Cruz JD and Caya MV(2018). White blood cell classification and counting using convolutional neural network. In: 2018 3rd International conference on control and robotics engineering (ICCRE), pp 259–263. IEEE

  70. Hegde RB, Prasad K, Hebbar H, Singh BMK (2019) Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern Biomed Eng 39(2):382–392

    Google Scholar 

  71. Choi JW, Ku Y, Yoo BW, Kim JA, Lee DS, Chai YJ, Kong HJ, Kim HC (2017) White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks. PLoS ONE 12(12):e0189259

    Google Scholar 

  72. Vogado LH, Veras RM, Araujo FH, Silva RR, Aires KR (2018) Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng Appl Artif Intell 72:415–422

    Google Scholar 

  73. Rehman A, Abbas N, Saba T, Rahman SIU, Mehmood Z, Kolivand H (2018) Classification of acute lymphoblastic leukemia using deep learning. Microsc Res Tech 81(11):1310–1317

    Google Scholar 

  74. Shafique S, Tehsin S (2018) Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol Cancer Res Treat 17:1533033818802789

    Google Scholar 

  75. Tuba E, Strumberger I, Bacanin N, Zivkovic D and Tuba M (2019). Acute lymphoblastic leukemia cell detection in microscopic digital images based on shape and texture features. In: International conference on swarm intelligence. Springer, Cham, pp 142–151

  76. Acevedo A, Alférez S, Merino A, Puigví L, Rodellar J (2019) Recognition of peripheral blood cell images using convolutional neural networks. Comput Methods Progr Biomed 180:105020

    Google Scholar 

  77. Jha KK, Dutta HS (2019) Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Comput Methods Progr Biomed 179:104987

    Google Scholar 

  78. Kumar I, Bhadauria HS, Virmani J, Thakur S (2017) A classification framework for prediction of breast density using an ensemble of neural network classifiers. Biocybern Biomed Eng 37(1):217–228

    Google Scholar 

  79. Kumar I, Bhadauria HS, Virmani J (2018) A computerised framework for prediction of fatty and dense breast tissue using principal component analysis and multi-resolution texture descriptors. Int J Comput Syst Eng 4(2–3):73–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Rawat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, J., Virmani, J., Singh, A. et al. FAB classification of acute leukemia using an ensemble of neural networks. Evol. Intel. 15, 99–117 (2022). https://doi.org/10.1007/s12065-020-00491-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00491-9

Keywords

Navigation