Skip to main content

Advertisement

Log in

Nutritional regulation of gene expression

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

The human genome has now been mapped with a complete sequence to follow shortly. The race is on to apply the vast amount of information contained in the billions of base-pairs. Concurrently, there is an increased demand from the public for perceived natural products. The nutritional supplement and pharmaceutical industries are broadening their product lines to meet this ever-increasing demand. As the genetic basis of disease becomes more evident, it is clear that the two industries will be forced to turn their attention to nutrients affecting gene expression. Such nutritional regulators of gene expression, or genomeceuticals (Brudnak, 2001), have enormous potential for therapeutic and prophylactic applications in both industries by affecting the integrity and expression of genes. However, there are caveats to this application, which if unheeded, may have disastrous results. This paper explores the idea behind the burgeoning area of genomeceuticals as well as some potential pit-falls that this novel area harbors. Representative examples are presented with a subsequent discussion focusing on the specifics of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B.; Dennis, B.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J. D. (1989) Molecular Biology of The Cell. 2nd ed. Garland Publishing, New York.

    Google Scholar 

  • Brudnak, M. A. (2001) Genomic multi-level nutrient-sensing pathways. Med Hyp.

  • Brudnak, M. From Genes to Natural Health: A Molecular Rationale for Enzyme Therapy.

  • Cousins, R. J. (1996) Nutritional Regulation of Gene Expression. American Journal of Medicine; 106 (1A): 20S-51S.

    Google Scholar 

  • Cousins, R. J. (1994) Metal elements and gene expression. Annu Rev Nutr 14: 449–469.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, D. W., et al. (1994) Characteristics of women with a family history of ovarian cancer. I. Galactose consumption and metabolism. Cancer Aug 15 74(2): 1309–1317.

    Google Scholar 

  • Daniels, M. C.; McClain, D.A.; Crook, E. D. (2000) Transcriptional regulation of transforming growth factor beta 1 by glucose: investigation into the role of the hexosamine biosynthesis pathway. Am J Med Sci 319: 182–42.

    Article  Google Scholar 

  • Ferguson, A. T.; Evron, E.; Umbricht, C. B.; Pandita, T. K.; Chan, T. A.; Hermeking, H.; Marks, J. R.; Lambers, A.R.; Futreal, P. A.; Stampfer, M. R.; Sukumar, S. (2000) High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97 (11): 6049–6054.

    Article  PubMed  CAS  Google Scholar 

  • Halaas, J. L.; Gajiwala, K. S.; Maffei, M.; Cohen, S. L.; Chait, B. T.; Rabinowitz, D.; Lallone, R. L.; Burley, S. K.; Friedman, J. M. (1995) Weight-Reducing Effects of the Plasma Protein Encoded by the Obese Gene. Science 269: 543–546.

    Article  PubMed  CAS  Google Scholar 

  • Kamohara, S.; Burcelin, R.; Halaas, J. L.; Friendman, J. M.; Charron, M. J. (1997) Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389: 374–377.

    Article  PubMed  CAS  Google Scholar 

  • Kirkman Laboratories. Wilsonville OR. Personal communications.

  • Kornfeld, R.; Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, P.; Alban, A.; Gebhard, D.; Diamond, B. (1997) Overexpression of bcl-2 alters usage of mutational hot spots in germinal center B cells. Mol Immunol 34 (14): 1011–1018.

    Article  PubMed  CAS  Google Scholar 

  • Lostao, P. M.; Urdaneta, E.; Martinez-Anso, E.; Barber, A.; Martinex, J. A. (1998) Presence of leptin receptors in rat small intestine and leptin effect on sugar absorption. FEBS Letters 423: 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, B. (1997) GENES VI. Oxford University Press, Oxford.

    Google Scholar 

  • Liebow, C. (1987) Specific end-product feedback regulation of pancreatic protein synthesis. Pancreas 2 (2): 136–40.

    Article  PubMed  CAS  Google Scholar 

  • Mantzoros, C. S.; Prasad, A. S.; Beck, F. W.; Grabowski, S.; Kaplan, J.; Adair, C.; Brewer, G. J. (1998) Zinc may regulate serum leptin concentrations in humans. J Am Coll Nutr 17 (3): 270–275.

    PubMed  CAS  Google Scholar 

  • McClain, D. A.; Paterson, A. J.; Roos, M. D.; Wei, X.; and Kudlow, J. E. (1992) Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells. Medical Sciences 89: 8150–8154.

    CAS  Google Scholar 

  • Ptashne, M. A (1992) Genetic Switch. Phage 1 and Higher Organisms. Blackwell Scientific Publications & Cell Press, Cambridge, Ma.

    Google Scholar 

  • Ren, F.; Zhang S.; Mitchell, S. H.; Butler, R.; Young, C. Y. F. (2000) Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene 19: 1924–1932.

    Article  PubMed  CAS  Google Scholar 

  • Rocco, V.; De Massy, B.; Nicolas, A. (1992) The Saccharomyces cerevisiae ARG4 initiator of meiotic gene conversion and its associated double-stand DNA breaks can be inhibited by transcriptional interference. Proc Natl Acad Sci USA 89: 12068–12072.

    Article  PubMed  CAS  Google Scholar 

  • Roos, M. D.; Han, I. O.; Paterson, A. J.; Kudlow, J. E. (1996) Role of glucosamine synthesis in the stimulation of TGF-a gene transcription by glucose and EGF. Am J Physiol 270: C 803–811.

    CAS  Google Scholar 

  • Smith, P. J.; Makinson, T. A. (1989) Cellular Consequences of Overproduction of DNA Topoisomerase II in an Ataxia-Telangiectasia Cell Line. Cancer Research 49: 1118–1124.

    PubMed  CAS  Google Scholar 

  • Smith, M. W.; James, P. S.; Peacock, M. A. (1991) Galactose effects on enterocyte differentiation in the mouse jejunum. Biochim Biophys Acta 1093 (2–3): 144–146.

    PubMed  CAS  Google Scholar 

  • Salem, C.; Liang, G.; Tsai, Y. C.; Coulter, J.; Knowles, M. A.; Feng, A. C.; Groshen, S.; Nichols, P. W.; Jones, P. A. (2000) Progressive increases in de novo methylation of CpG islands in bladder cancer. Cancer Res 60 (9): 2473–2476.

    PubMed  CAS  Google Scholar 

  • Stryer, L. (1996) Biochemistry. 4th ed. W. H. Freeman and Company, New York.

    Google Scholar 

  • Usmani, B. A.; Shen, R.; Janeczko, M.; Papandreou, C. N.; Lee, W. H.; Nelson, W. G.; Nelson, J. B, Nanus, D. M. (2000) Methylation of the neutral endopeptidase gene promoter in human prostate cancers. Clin Cancer Res 6 (5): 1664–1670.

    PubMed  CAS  Google Scholar 

  • Vallett, S. M.; Brudnak, M.; Pellegrini, M.; Weber, H. W. (1993) In vivo regulation of rRNA transcription occurs rapidly in nondividing and dividing Drosophila cells in response to a phorbol ester and serum. Mol Cell Biol 13 (2): 928–933.

    PubMed  CAS  Google Scholar 

  • van Osterwijk, M. F.; Versteeg, A.; Filon, R.; van Zeeland, A. A.; Mullenders, L. H. F. (1996) The Sensitivity of Cockayne’s Syndrome Cells to DNA-Damaging Agents Is Not due to Defective Transcription-Coupled Repair of Active Genes. Molecular and Cellular Biology 4436–4444.

  • Wang, J.; Liu R.; Hawkins, M.; Barzilai, N.; Rossetti, L. (1998) A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393: 684–688.

    Article  PubMed  CAS  Google Scholar 

  • Weber, H. W.; Vallett, S.; Neilson, L.; Grotke, M.; Chao, Y.; Brudnak, M.; Juan, A. S.; Pellegrini, M. (1991) Serum, insulin and phorbol esters stimulate rRNA and tRNA gene expression in both dividing and nondividing Drosophila cells. Mol Cell Biochem 104 (1–2): 201–207.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Brudnak Ph.D., N.D..

Additional information

Calculations based on: mw of GlcNAc · HCl=215.64, mw GlcNAc=179.18. Given: an infusion rate of 15 µM/Kg/min, 15 µM of GlcNAc=2.68 mg, and GHCl (glucosamine hydrochloride) is 83% GlcNAc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brudnak, M.A. Nutritional regulation of gene expression. Theory Biosci. 120, 64–75 (2001). https://doi.org/10.1007/s12064-001-0033-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-001-0033-9

Key words

Navigation