1 Introduction

Supply chains (SCs) face unprecedented challenges. The tendency to lengthen them (Chopra et al. 2021) increases their vulnerability in terms of information sharing, and trust poses difficulties in their management. To overcome this problem, SC managers actively seek disruptive solutions that bring innovativeness, efficiency, and effectiveness to their operations (Behnke and Janssen 2020). The global state of emergency due to the Covid-19 pandemic in 2020 highlighted the need for SC digitalization. The digitalization phenomenon is already shaping new realities and relationship models throughout the entire SC network (Queiroz and Fosso Wamba 2019). One of the most recognizable disruptive technologies for SC adoption is blockchain technology (BCT) (Queiroz et al. 2020).

Blockchain is defined as a ‘cryptographically guaranteed non-tamperable and unforgeable distributed decentralized ledger’ (Liu and Li 2020, p.2). BCT makes it possible for supply chain management (SCM) activities and operations to occur in a highly secure and transparent way, without the need for a central organization (Gonczol et al. 2020). Thus, it is a potential game-changer for supply chains (SCs) in terms of information exchange and verified transactions (Hackius and Petersen 2020). However, the adaptation blueprint of BCT still requires a more focused and comprehensive evaluation (Wong et al. 2020a), as well as an understanding of the critical requirements, issues, and challenges across the SC (Ghode et al. 2020b; Wang et al. 2020b) for successful BCT deployment.

Endeavours to systematize BCT in the SCM context have been undertaken by numerous scholars, with a focus on, i.e. application areas (Queiroz et al. 2019; Chang and Chen 2020; Duan et al. 2020), industrial contexts (Wang et al. 2019a; Idrees et al. 2021), concept definition (Fosso Wamba et al. 2020a, b), bibliometric analysis (Fosso Wamba et al. 2020a; Müßigmann et al. 2020), and article coding (Lim et al. 2021). Systematization has also been explored in the transport and logistics sector (Kummer et al. 2020; Pournader et al. 2020), food SC (Kayikci et al. 2020; Stranieri et al. 2021), and from information-sharing perspectives (Wan et al. 2020). The potential benefits, challenges, drivers, and barriers to BCT adoption in SCM have also been studied using empirical data (van Hoek 2019; Wang et al. 2019b; Stranieri et al. 2021) as well as in specific fields such as agriculture (Kamilaris et al. 2019), the textile and clothing industry (Agrawal et al. 2021) and modern military solutions (Saadiah and Rahayu 2021). A common feature of these wide-ranging attempts to study BCT in SC is a case-specific perspective.

There are as well more generalized reviews that were found in prior literature, that were not attaching findings to a specific area of application. Such studies were building comprehensive maps of separate BCT application topics and themes for supply chain performance (Mahyuni et al. 2020), indicating the most influential authors and publications in the area (Moosavi et al. 2021), separately summarizing enablers, benefits, and risks of BCT adoption (Karakas et al. 2021), conceptualizing stages and factors behind the adoption (Vu et al. 2021).

Extant literature reviews offer many contributions in specific sectors, e.g. food and agriculture SCs (Galvez et al. 2018; Lezoche et al. 2020; Sharma et al. 2021), or reviews of a mix of different technologies under the scope of Industry 4.0 (Bodkhe et al. 2020; Mistry et al. 2020). There as well were studies that grouped themes into clusters (Klerkx et al. 2019) and structured topics and trends into mind maps (Casino et al. 2019). Recently scholars were conducting bibliometric analysis of literature in the field (Moosavi et al. 2021; Tandon et al. 2021), in the context of operations management, mechanisms of a traceability feature of BCT were explored (Feng et al. 2020). Thematic analysis, identifying the orders of benefits and challenges domains of BCT adoption in food SC was as well performed (Chen et al. 2021). However, there is still a lack of a more holistic understanding of the ways in which BCT implementation impacts SCM and operations, outside of a specific application area or context, based on systematized data.

Among open issues of BCT exploration in SC context, such research gaps as suitability of BCT for specific projects, and a mechanism to choose a proper blockchain network that would suite the actual needs of the application was highlighted (Casino et al. 2019). The need of leading through emerging technologies adoption was mentioned (Klerkx et al. 2019), in order to enhance the benefits and alleviate potential negative effects. Research is needed to guide through decision-making process of the adoption of BCT for businesses (Frizzo-Barker et al. 2020). It is also necessary to investigate the societal, organizational, and environmental factors that affect BCT implementation in SCM (Tandon et al. 2021).

Therefore, the contribution of the present research goes beyond prior studies to provide a broader vision and holistic understanding of the existing features of BCT in the SCM context, grouping them into unified general dimensions, without limiting it further to a specific industry or area of application. Like this, it would contribute to gaps identified by previous scholars in the field. Against this backdrop, this research aims to create a systematized understanding of BCT in the SCM context. The goals of this study are threefold: (1) to explore the dimensions of the impact of BCT implementation in SCM; (2) to explore the synergies of these dimensions; and (3) to explore the virtuous and vicious cycles of the adoption of BCT use in SCM.

To achieve these goals, a systematization of the existing literature is pursued. Specifically, BCT features found in the literature are systematized, the operations management dimensions of the impact of BCT implementation in SCM are exposed, and the synergetic and counter-synergetic effects of these dimensions in terms of the advantages, disadvantages, and constraints of BCT implementation are discussed.

The remainder of this paper is organized as follows. Section 2 provides a literature review of the BCT phenomenon in the SC context, as well as current SCM challenges. Section 3 details the methodology adopted in this study. Section 4 provides a systematized understanding of BCT features in the SCM context, which are conveniently displayed in tables and clarifies the logic process underpinning the dimensions and their synergies. Section 5 discusses the theoretical and managerial contributions of this study and suggests areas to be addressed in future studies. Finally, Sect. 6 provides the conclusions of the study and critically identifies its limitations.

2 Literature review

Today, supply chains are beginning to lose the necessary visibility across networks due to their length (Mubarik et al. 2021). SC visibility is the transparency to identify product transit status throughout and outside the supply chain (Roy 2021). It plays a crucial role in strengthening trust and collaboration among different stakeholders (Baah et al. 2021). Thus, to gain visibility for SCs, organizations must establish a way to share timely and reliable information across networks (Tapscott and Tapscott 2020).

Another major SCM focus of organizations is a long-term stability perspective: building confidence and reliance among SC participants (i.e., building trust) (Paluri and Mishal 2020). The long and complex nature of SC networks requires interactions between multiple entities, resulting in challenges in establishing trust among them (Doroudi et al. 2020). An increasing level of trust in the SC scale leads to risk reduction (Collier and Sarkis 2021) and more stable end-consumer behavior (Doroudi et al. 2020).

2.1 Blockchain technology

Blockchain is a fully distributed and decentralized system that can capture and store cryptographically encoded data and transactions in a block manner, similar to a distributed ledger (Queiroz et al. 2019). The mechanism behind BCT then connects each block—which is identified with a unique hash code (a cryptographic algorithm that transforms a data input into a fixed-length irreversible output)—to a previous block, thus connecting all blocks into a chain (Queiroz et al. 2020; Wang et al. 2020c). This chain structure is the fundamental feature that ensures immutable and reliable data in the ledger, as each block holds details (the unique hash code) of the previous blocks’ content (Gonczol et al. 2020). Thus, BCT allows safe data exchange within the SC in a distributed manner (Wang et al. 2019b).

BCT brings traceability to SCs, allowing assets to be tracked and providing stakeholders with the visibility required to do so (Choi 2020; Wang et al. 2020b). Through BCT adoption, it is possible to reduce the incidence of unfair practices and counterfeits (Juma et al. 2019; Stranieri et al. 2021) and boost the overall efficiency of SC operations (Leng et al. 2018). Another important innovation that BCT entails is smart contracts, which are, essentially, ‘digital contracts that flow across enterprises’ (Kamble et al. 2019, p.2011), enabling the automation of processes (Nandi et al. 2020) because smart contracts are self-executable (Min 2019). Overall, BCT has the potential to manage resources efficiently and reduce inventory levels (Kamble et al. 2019), reduce SC risks through traceability features (Kshetri 2018; Montecchi et al. 2019), and optimize planning and forecasting decisions (Perboli et al. 2018).

2.2 Blockchain benefits and challenges in the context of supply chain management

BCT also has attractive capabilities for SC participants; it can improve collaboration between entities (Mao et al. 2018), especially in untrusted environments (Liu and Li 2020), and reduce the bullwhip effect (Perboli et al. 2018). Increasing SC performance and data visibility (Hald and Kinra 2019) results in product quality compliance and improves trust among consumers (Ghode et al. 2020b; Nandi et al. 2020). To improve practitioners’ experience, BCT can, for example, be used together with other artificial intelligence technologies (Kayikci et al. 2020) and combined with Internet of Things (IoT) devices (Rejeb et al. 2019).

However, BCT has several disadvantages. Although BCT can provide traceability through digital records, it cannot ensure the real condition of physical products in transit (Yadav and Singh 2020) and is not always a suitable solution, depending on the cost of the product. For example, for lower-cost products, there is less need to thoroughly trace products (van Hoek 2019). Smart contracts are also considered difficult to implement if the coding of the contract is of poor quality, which usually leads to a series of problems throughout the SC (Cole et al. 2019). The lack of central authority within the SC is sometimes considered a disadvantage, especially when resolving disputes among SC entities (Wang et al. 2019a, b). Another major concern is an environmental one: BCT consumes excessive amounts of energy to conduct transaction-related activities (Öztürk and Yildizbaşi 2020; Yadav et al. 2020).

Some challenges still exist in modern SCM, including, e.g. relationship and trust issues between participants in complex SCs, considerations regarding firms’ social responsibilities, concerns over the visibility of operations that reveal the dynamics of supply processes, and issues related to exploiting SCM to influence consumers’ buying decisions and gain a competitive advantage (Cole et al. 2019; van Hoek 2020a, b; Rogerson and Parry 2020). BCT is considered a possible solution to these limitations of modern SCs; however, a rigorous academic investigation is still required to understand the extent to which BCT may create value for firms (Treiblmaier 2018).

Additionally, there are some practical constraints in the adoption of BCT in the SCM context. For example, a lack of a relevant legal framework (Sheel and Nath 2019) can lead to difficulties in convincing all stakeholders to adopt BCT (Duan et al. 2020). A lack of trust among SC network participants, national circumstances, and cultural differences can also result in different decisions during the adoption process (Kopyto et al. 2020; Queiroz et al. 2020; Wong et al. 2020a). Currently, most SCs are not yet ready for BCT adoption due to either the lack of an organized ecosystem (Kamble et al. 2019) or the novelty of the technology (Min 2019), as adoption of this technology is a complex process. Not only it requires appropriate infrastructure, but it also needs to overcome challenges related to existing regulatory and legal governance systems (Kamble et al. 2021).

BCT adoption poses constraints for supply chain participants in terms of coping with the innovative decentralized structure (Omar et al. 2020). Dimensions of BCT characteristics were introduced in the context of supply chain collaboration (Rejeb et al. 2021), manufacturing industry (Karamchandani et al. 2021), healthcare supply chains (Aich et al. 2021), and categorized key enablers of BCT accordingly to its aims and opportunities (Ali et al. 2021). However, to the best of our knowledge, a more holistic approach on BCT dimensions of impact and their intersections exploration in terms of supply chain implementation was not yet performed. A perceptible knowledge gap between managers of various organizations and their comprehension of BCT was revealed (Walsh et al. 2021), thus an intelligible representation of potential dimensions of impact and their interconnection would assist practitioners in terms of novel technology understanding and applications.

3 Methodology

To comprehensively address this study’s aims, a systematic literature review (SLR) was chosen as the most suitable methodology, as it enables following a pre-planned route to enable the most relevant existing literature to be chosen, evaluated, and analyzed to generate the study’s findings (Denyer and Tranfield 2009). For the SLR, this study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) checklist (Moher et al. 2009). Adherence to the PRISMA checklist ensures clarity in the review process for others and maintains a structured process, as it requires a transparent motion in the study selection and analysis processes (Saunders et al. 2012). As implied by the PRISMA checklist, for convenience, the literature selection process needs to be schematically presented in a flow diagram; Fig. 1 introduces the selection process conducted for this study.

Fig. 1
figure 1

Literature selection process

Three academic databases were selected for this study: Web of Knowledge (WoS), ABI/Inform, and Scopus. These databases were chosen as trusted global platforms for academic searches and for their ability to provide top multidisciplinary journal and article results. The keywords for the search were ‘blockchain’ and ‘supply chain’; an advanced search function was used to collect articles with both keywords found in the title and abstract. The search was also limited to peer-reviewed articles written in English. All publications available up to January 2022 were included, without any limitations per year.

As can be seen in Fig. 1, the number of studies identified in each database was as follows: WoS (356), ABI/Inform (212), and Scopus (383). Thus, a total of 951 articles were identified. The first step was to exclude the duplicates, which resulted in 466 unique articles. The next stage was a prior screening of articles based on the titles and abstracts, to include articles focused on operations management, logistics, specific supply chain applications, and to avoid more technical articles that go beyond the scope of the following research. Examples of topics that did not meet the prior screening criteria include, but are not limited to: humanitarian SCs, supply chain finance, detailed technical descriptions of smart contracts and protocols, crypto-asset applications, energy delivery systems etc. It is important to note, that the research objects were not limited to any specific article types, due to the novelty of the topic, thus all studies, that were compliant with the screening criteria mentioned above, were included. The prior screening step resulted in 180 selected articles. Next, to increase the level of screening and classification, only articles from Q1 and Q2 academic journals (based on SCImago Journal Rank) were included, which resulted in a total of 144 articles. The full texts of these 144 articles were screened, and based on content analysis and eligibility to the study, 139 articles were selected for inclusion in this SLR.

Table 1 shows the exemplary list of journals and the number of publications that were found among the final selected set of 139 articles, to identify the most frequent journals in which the articles were published. The three leading journals are (1) the International Journal of Production Research, (2) IEEE Access and (3) the International Journal of Information Management. This sequence once again highlighted the multidisciplinary nature of the topic, given that academic articles were found in both SCM and production/logistics journals, as well as IT-focused journals. The types of articles also varied from more theoretical to technological applications. These 139 articles were then thoroughly and carefully analyzed to identify the advantages, disadvantages, and constraints (features) of BCT application to SCM, highlighted by the authors. These features were further classified based on meaning and content to ensure the integrity of the findings.

Table 1 Journals with the top number of published articles in the field of blockchain technology in supply chain management

4 Dimensions of the impact of blockchain technology implementation in supply chain management

Overall, as can be seen in Tables 2, 3 and 4 the number of advantages of BCT use in SCM is greater than the disadvantages, and the number of constraints is also limited. The features identified in Tables 2, 3 and 4 are listed in order, from the most reported to the least reported.

Table 2 Advantages of blockchain technology in supply chain management context
Table 3 Disadvantages of blockchain technology in supply chain management context
Table 4 Constraints of blockchain technology in supply chain management context

The three most reported advantages of BCT use in the SCM context (Table 2) are (1) transparency and traceability, (2) cost reduction, and (3) supply chain actors’ trust improvement. This can be explained by the nature of the decentralized distributed ledger, that creates a trusted environment among SC players (Büyüközkan et al. 2021) and has beneficial outcomes in terms of enhancing the efficiency of SCs. The transparency afforded by BCT spreads to processes and products, thereby ensuring information authenticity (Bai and Sarkis 2020).

The three most mentioned disadvantages of BCT use in the SCM context (Table 3) are (1) information privacy concerns, (2) scalability, and (3) low awareness and knowledge of technology. Overall, these three disadvantages can be explained by the fact that this technology is still novel, and thus doubts and concerns remain regarding its application in the SCM context (Fosso Wamba et al. 2020b). Moreover, low awareness may arise not only from the side of SC partners, but also from the side of final consumers’ low acquaintance with BCT features; consequently, this might be a critical factor of adoption renouncement (Fan et al. 2020).

Further, the three most mentioned constraints of BCT use in the SCM context (Table 4) are (1) the early stage of blockchain adoption in SCM practices, (2) lack of organizational policies/legal regulations, and (3) technology complexity. Overall, these constraints highlight the novelty of BCT and practical considerations in its application. Early-stage creating barriers in terms of implementation indicates that future research must be conducted to overcome them (Saberi et al. 2019).

Thus, there is a wide range of features reported in the literature related to the implementation of BCT in SCM. Their nature and areas of impact vary, and systematization is required to perceive the full extent of their interrelations. Consequently, these areas of impact are further analyzed to highlight the interrelated influence of the perceived advantages, disadvantages, and constraints.

The features of BCT can be considered from different perspectives, and as shown in Tables 2, 3 and 4, they are extremely varied and somewhat contradictory. Inspired by a study found in the extant literature, where BCT adoption was explored from the point of view of Malaysian small-medium enterprises (SMEs) under three dimensions: technological, organizational, and environmental (Wong et al. 2020a), we wanted to bring a general view on the adoption process and which benefits and challenges BCT can cause to SCs. Thus, we propose an attempt to group and systematize BCT features into the comprehensive dimensions of the impact of technology adoption under general SCM context, not attached to a specific context/sample group, in order to see in which areas and in what ways it can influence SC improvements and performances.

Novel digital technologies play a major role in managing information flow and processes for operations and SCs (Wong et al. 2020a), both scholars and practitioners are aiming to improve operations and processes of business practices with capabilities that disruptive technologies bring (Boutkhoum et al. 2021). When examining BCT from the SC perspective, its application in large-scale production is justified (Fu and Zhu 2019); it acts as a unified ledger for manufacturing and processes (Cole et al. 2019). Thus, it improves SC processes because there is no need for an intermediary (Öztürk and Yildizbaşi 2020). As a result, it optimizes and enhances operations and inbound efficiency (Perboli et al. 2018). Hence, the first dimension of impact is characterized as organic SCM activities; because it mostly relates to process efficiency and operations in the SCM context, the first dimension of impact is labeled as ‘operations and processes’.

The main component of any SC is its entities/participants. BCT connects multiple stakeholders (Mao et al. 2018), reducing trust issues (Kamble et al. 2019) and potentially removing third-party actors with more power over prices and processes who can become manipulative (Wang et al. 2019a, b). Thus, BCT plays a role in collaborative behavior among stakeholders (Chang et al. 2019), improves the information flow between partners (Hackius and Petersen 2020), and provides authenticity and knowledge provenance to end consumers (Montecchi et al. 2019). As a disruptive technology, implementation of BCT requires commitment from upper management as well, to encourage team spirit in the adoption process and to help overcome related challenges (Zhou et al. 2020). It was recently revealed that social influence, or in the SC context a partnership experience, plays a substantial role when introducing novel systems (Alazab et al. 2021). Consequently, the second dimension of impact is aimed to shed light on those BCT features that impact relationships among organizations’ representatives, and is called ‘supply chain relationships’.

Considered as the ‘latest transformative innovation’ (Schmidt and Wagner 2019), characterized by innate features such as its immutability and distributed nature (Gonczol et al. 2020), BCT requires SC participants to be open-minded to innovative ideas (Min 2019). The inherent characteristics of BCT can enhance and optimize SC potential (Juma et al. 2019) while building an authentic and trustworthy ecosystem (Azzi et al. 2019) with a novel view on data access. One of the success factors for a blockchain-based SC is ‘system strength’, which encompasses the representative capabilities of BCT, including a trustless environment and network resistance to attacks (Shoaib et al. 2020). The need to examine innovation trends of BCT-based solutions for business networks was highlighted (Dehghani et al. 2020), expected to bring innovation in both aspects: technological and managerial (Dehghani et al. 2021). Overall, this highlights the need in the third dimension of impact, that would represent impact of the distinctive features of BCT itself: named as ‘innovation and data access’ dimension.

Above-mentioned dimensions are rather emerging naturally when addressing the impact of BCT in SCM practices, thus further translated into the dimensions, it brings clarity for the classification of specific BCT features. The logic behind defining these dimensions of impact is to represent them graphically as clusters and classify the characteristics from Tables 2, 3 and 4 within the formulated dimensions to determine the existence of interrelationships and the overlapping areas that arise between dimensions.

4.1 Advantages of blockchain technology when implemented in supply chains

Figure 2 represents the advantages classified within each of the three impact dimensions. For graphical representation purposes, a Venn diagram highlights the coexistence and overlap within these dimensions. It is relevant to understand, that overlapping areas represent features intrinsic to a mix of different dimensions; the overlapping areas are from now on going to be called “synergies”.

Fig. 2
figure 2

Venn diagram for advantages of blockchain technology implementation in supply chain management

Synergy #1, between ‘operations and processes’ and ‘supply chain relationships’, indicates advantages such as the reduction of human error, which is enabled by smart contracts features, that are characterized by self-verification and self-integrity, allowing elimination of previously trusted third parties (Deebak and Fadi 2021). It therefore potentially results in reduced errors in order fulfilment (Min 2019), process deployment (Saberi et al. 2019), and reduced paperwork errors (Wang et al. 2019a, b). Decentralized BCT-based networks also reduce risk in operations (Öztürk and Yildizbaşi 2020) in data manipulation coming from the administrative side in current centralized systems (Hewa et al. 2021). Cost reduction stems as well from the automation of transactions (Cole et al. 2019): automation simplifies SCs because intermediaries are no longer needed (Montecchi et al. 2019), which substantially reduces transaction costs (Yadav et al. 2020).

Synergy #2 relates to features that bring advantages from the perspectives of ‘supply chain relationships’ and ‘innovation and data access’ of BCT. The advantages are clearly discernible; BCT, as a digital transaction ledger (Kamilaris et al. 2019), can store everything within the SC’s memory, and any actor can access it at any time (Hald and Kinra 2019), thus enabling ‘timely information acquisition and sharing’(Wong et al. 2020b, p.2102). BCT also provides highly secure access to data (Kim and Laskowski 2018); thus, its immutable nature combined with cryptographic security leads to a new level of trust between actors (Treiblmaier 2018).

Synergy #3, which lies between ‘operations and processes’ and ‘innovation and data access’, is extremely interesting. The BCT-based flow of information reduces physical risks to individuals, preventing potential health harm to consumers, therefore protecting entities from failures through the availability of transparent records; it increases the knowledge provenance of a product (Montecchi et al. 2019), both to SC actors and end customers (Rogerson and Parry 2020). For instance, shipping processes reduce trade documentation (Wang et al. 2019a, b), enable customs documentation processing to commence earlier (van Hoek 2020b), and decrease paperwork in general (Gonczol et al. 2020).

This classification allows us to identify the key advantages of all three dimensions of impact. This centre area in the diagram cannot be considered to represent the ‘main’ advantages, but it does reveal the characteristics that are common to all three dimensions:

  1. 1.

    Intermediary elimination: There is no need to verify transactions through a third party (Pournader et al. 2020) or a trusted authority (Dutta et al. 2020).

  2. 2.

    Sustainability verification: BCT enables the visibility of water and energy consumption throughout the SC processes (van Hoek 2019), as, when applied to a fast-fashion industry (Wang et al. 2020a), thus helping achieve emergent sustainability goals (Bai and Sarkis 2020). BCT can also shed more light on social sustainability: it can bring transparency into working safety and conditions, preventing working exploitation practices and inequality (Venkatesh et al. 2020).

  3. 3.

    Transaction reliability: BCT assures transaction authenticity (Leng et al. 2018); being fully traceable, organisations can see the origins of transactions (Queiroz and Fosso Wamba 2019).

  4. 4.

    Information authenticity: This implies both the availability of verified information accessible to any entity part of the network (Nandi et al. 2020) and backward monitoring available to the end consumer (Casino et al. 2019).

  5. 5.

    Fraud detection: This refers to entity verification, given that the authenticity of each device is verified (Cui et al. 2019), which guarantees that each user is authorised (Duan et al. 2020) and enables the detection of potentially fraudulent activities within the network (Kshetri 2018).

  6. 6.

    Product safety assurance: This mainly emerged among food SCs, where the characteristics of food, its storage conditions, etc., can improve safety and avoid contamination (Kamilaris et al. 2019) by enabling the on time recall of products (Azzi et al. 2019). Safety assurance is also applicable for other types of SCs; BCT ensures the safety and quality of products for end consumers (Montecchi et al. 2019);

  7. 7.

    Real-time auditing: Owing to its decentralised nature (O’Leary 2019) and the automation of processes, BCT enables real-time auditing through time-stamping (Cole et al. 2019).

4.2 Disadvantages of blockchain technology when implemented in supply chains

Interestingly, the three dimensions of impact have some overlap in terms of advantages, disadvantages, and constraints. Figure 3 provides an illustrative example of how the same feature can be read an advantage or disadvantage, depending on the context.

Fig. 3
figure 3

Venn diagram for disadvantages of blockchain technology implementation in supply chain management

At Synergy #1, between ‘operations and processes’ and ‘supply chain relationships’, security concerns and the data manipulation are noted as disadvantages. Data manipulation is mainly a characteristic of open access blockchain networks (Liu and Li 2020). It is demonstrated by examples of hacking attack incidents with some cryptocurrencies (Wang et al. 2019a), where a data miner could invade at one point of a BCT network to compromise original nodes to get a fraudulent high revenue (Karuppiah et al. 2021). Even in private blockchain networks, this is a potential issue in cases where, for example, the account owner accidentally loses the pair of private keys, thus losing access to the network and authorisation (Kamilaris et al. 2019), and in the case of such security breach, documents can potentially be tampered, resulting in disturbance of SC operations. However, the order placed in the network cannot be tampered (Ada et al. 2021); thus, even if BCT leaves opportunities for data manipulation or infringement, when compared with a centralized network, peer-to-peer BCT architecture it is still a more secure system (Büyüközkan et al. 2021).

Synergy #2, between ‘supply chain relationships’ and ‘innovation and data access’, is a similar, albeit slightly different, disadvantage: information privacy concerns. Such concern is mainly explained by the unwillingness of stakeholders to share full information along the complex multi-tier SCs (Perboli et al. 2018). The perspective on BCT-enabled transparency is controversial upon different tiers of players, e.g. upper tiers have more motivation to keep its information confidential from lower tiers of SC (Öztürk and Yildizbaşi 2020). Thus, it is crucial for SC players to jointly define to what extent of detailed information network should go, in order to keep information transparency at justifiable level, and to prevent misuse of information (Behnke and Janssen 2020). This issue may as well occur when a stakeholder considers valuable information a competitive advantage and is unwilling to share it with other participants in the SC (Kouhizadeh et al. 2021).

Finally, Synergy #3, between ‘innovation and data access’ and ‘operations and processes’, relates to scalability issues, which depend on the novelty of the technology itself and the efficiency of operations. The scalability issue is explained by the fact that each blockchain node needs to contain the network’s entire history (Mao et al. 2018), which limits the capacity to deal with big data and limits data storage (Cha et al. 2020).

One of the disadvantages in the centre, overlapping area relates to the high cost of implementing this technology, which seems to contradict a feature shown in Fig. 2: that BCT can reduce costs due to its innate qualities. Both of these arguments arise when an organisation considers implementing BCT- it has a high investment cost (Öztürk and Yildizbaşi 2020), and such platforms can be too expensive for small-scale stakeholders within the chain (Howson 2020). The other two central issues can be seen as a continuation of each other: low-quality data input means possible errors related to the incoming data to the platform (Stranieri et al. 2021), due to a lack of sufficient knowledge about technology and the concepts behind it (Öztürk and Yildizbaşi 2020), which are constantly being developed (Treiblmaier 2018).

4.3 Constraints of blockchain technology when implemented in supply chains

When assessing the constraints of BCT in the SC context, most constraints turned out to be organisation- and technology-related issues in terms of practice, which are shown in Fig. 4.

Fig. 4
figure 4

Venn diagram for constraints of blockchain technology implementation in supply chain management

For example, Synergy #1 reveals limitations in accessing the technology (Saberi et al. 2019). Although BCT can connect complex international SCs, it can hinder or prevent new players and stakeholders from joining the system (Kamilaris et al. 2019).

Synergy #2 reveals another typical constraint for practitioners in the early stages of BCT adoption. While still in the testing and analysis stages (Fu and Zhu 2019), there is a limited understanding of how to adopt and roll it out effectively (van Hoek 2019), which creates uncertainty in the decision-making process (Ghode et al. 2020b), thereby creating organisational risk (Schmidt and Wagner 2019).

The standardisation of processes in Synergy#3 is also related to the early stages of technology adoption. It primarily concerns uncertainty regarding BCT integration into SC processes (van Hoek 2019), encompassing traceability, compliance, and quality requirements (Gonczol et al. 2020).

The constraint issues in the centre area regarding BCT implementation in the SC context may require considerable time to overcome because they are common to all three dimensions. There is still a lack of government regulatory processes (Min 2019), as well as a lack of legal standards and protocols (Chang et al. 2019), highlighting the need to develop new BCT-related governing policies (Ghode et al. 2020a). Another common difficulty is the complexity of the BCT. Non-technical experts lack sufficient knowledge (Gonczol et al. 2020) regarding the numerous new concepts that practitioners need to be aware of, such as smart contracts, cryptography, programming languages, and much more (Köhler and Pizzol 2020). Technical knowledge, therefore, needs to be addressed in the future (Kamble et al. 2019).

5 Discussion

There were three aims of this study: (1) to explore the dimensions of the impact of BCT implementation in SCM; (2) to explore the synergies of these dimensions; and (3) to explore the virtuous and vicious cycles of the adoption of BCT use in SCM. The study’s findings reveal the most emergent and distinctive features of BCT in the SCM context, enabling us to visualise overlaps and interrelationships between the dimensions of impact schematically. The remainder of this section identifies the theoretical contributions, managerial implications, and areas for future research.

5.1 Theoretical contribution

The theoretical contribution of this study is twofold. First, our study proposes a systematisation of BCT features in the SCM context that have been analysed, formulated, and classified in a unified manner, in contrast to the wide dispersion of classifications in prior literature. One of the reviewed articles adopted a similar approach: an SLR where potential benefits and challenges related to BCT were identified and later generalised and grouped into ‘high-value benefits/challenges’ (Fosso Wamba et al. 2020a, b). The proposed systematisation in the present study contributes to an understanding of the features of BCT in the SCM context that is up-to-date and summarised in Tables 2, 3 and 4. This is important to fully comprehend the breadth of BCT features and their meaning in the SCM context.

In addition to the aforementioned study, other prior studies have adopted a similar approach, including listing the critical success factors for BCT adoption in SCs (Yadav and Singh 2020), categorising performance-measure features (Bai and Sarkis 2020), focusing on benefits and barriers (Kamilaris et al. 2019), and summarising the advantages and challenges of BCT adoption (Schmidt and Wagner 2019; Gonczol et al. 2020). However, the contribution of the present study goes beyond prior studies to provide a generalised vision and holistic understanding of the existing features of BCT in the SCM context, without limitation to a specific industry or area of application.

The second theoretical contribution of this research is the identification of the three dimensions of the impact of BCT adoption in SCM. The ability to distinguish BCT features between the three dimensions and their intersections (Figs. 2, 3 and 4) alone brings a fresh perspective to this area of study. Thus, it improves our understanding of considerations under the detected dimensions of impact and their synergies, systematises knowledge of BCT in the SCM context, and broadens the perspective to a more holistic approach. To the best of our knowledge, these operations management dimensions have not yet been considered in the context of BCT features in SCM. Similar contributions have been made, but only in grouping the success factors of BCT-based SCs (Shoaib et al. 2020). Therefore, the present study advances the literature on BCT adoption in SCM, revealing new perspectives on BCT features’ consideration and grouping.

5.2 Managerial implications

The findings of this research clarify the BCT features for SCM practitioners. Firms intending to begin a pilot for BCT adoption in their SC processes are now able to, by examining the proposed diagrams (Figs. 2, 3 and 4), critically assess, for instance, whether the advantages of BCT adoption outweigh the disadvantages and constraints in their specific SC context. Thus, SC managers will also be able to assess the consequences of their investment in one of the dimensions of impact, noting the existence of an impact on the other two dimensions, given that all three dimensions are interrelated and overlapping. Practitioners can position their SCs to benefit from the positive synergetic effect from BCT advantages while decreasing the counter-synergetic effect. Another implication is that practitioners should consider the constraints, which would allow them to, for example, apply the ‘Solution Canvas’ for BCT adoption based on their unique SCs, as done in previous research (Perboli et al. 2018).

Prior literature has highlighted the benefits and challenges of BCT adoption only in the context of specific SCs (Dutta et al. 2020), which suggests another opportunity for practitioners. The identified features in Tables II–IV could also be used and applied to a specific industrial area of interest in order to build a practical understanding of the features in different areas of application. One of the reviewed articles coded performance categories, identifying the impact of BCT on them (Stranieri et al. 2021), which represents another opportunity for practitioners. The features identified in this study could be applied to specific performance categories to evaluate the need for BCT adoption. BCT is being discussed actively and ‘promises a revolutionary approach to data storage which could give rise to new business models’ (Wong et al. 2020b, p.2115). In this context, the present study provides a veridical picture of not only the virtuous but also the vicious cycles of adopting BCT in SCM, which is relevant for practitioners in terms of improving their understanding before beginning a pilot.

5.3 Future research opportunities

The identification of dimensions of the impact of BCT in operations area and SCs in specific opens many doors for future research. One of the most interesting and valuable future paths would be to apply the identified BCT dimensions of impact to a specific SCM area. For instance, it could be applied to cross-border logistics (Chang et al. 2020), e-commerce SCs (Liu and Li 2020), construction industry (Tezel et al. 2021), automobile SCs (Ada et al. 2021) and other industries, to determine whether there are differences in dimensions between specific areas. It would be interesting to examine differences between the SCM areas themselves, and differences between industries to reveal the key motivation factors and constraints of BCT adoption in various industries.

Moreover, the interaction between dimensions and synergies can vary in the same industry for different types of products. As one of the most common areas of BCT applications are food SCs, it would be valuable to examine dimensions separately for different types of food, e.g. marine conservations (Howson 2020), perishable food products (Kayikci et al. 2021), agri-food (Menon and Jain 2021) and see if the type of product plays a role in the perception of dimensions and features of BCT. It would be as well important to see the perspectives on the dimensions and synergies from the view of multiple tier SC players (Khan et al. 2021), as depending on the SC tier, the motivation and reasons for BCT adoption may vary.

Also, future studies could examine whether dimensions of impact and various cycles for manufacturing cases are different from those for service providers. Another research avenue is measuring differences in the large-scale adoption of BCT to SCM between for-profit and non-profit organisations, such as governmental pilots and business pilots. Further, inspired by existing research (Nandi et al. 2020), a framework for implementing BCT in SCM could be built based on the detected features and dimensions of impact to develop an understanding of their outcomes concerning SCM. We also suggest verifying this study’s proposed dimensions of impact through empirical research, including, for example, separate groups of various SC players, grouped based on their supply chain position (e.g. upper tiers separately from the lower tiers SC) to gather unbiased empirical data based on the views of a particular SC position. Such comparison of views on BCT adoption from different SC players would enrich the area of research with an understanding of the motivation for potential BCT pilots from different perspectives. It would bring value to both scholars and practitioners.

6 Conclusions and limitations

To the best of our knowledge, this study is the first attempt of defining and exploring the dimensions of the impact of BCT implementation in SCM context. Not only we classify features of BCT under the proposed dimensions, but the vicious and virtuous cycles of dimensions’ synergies were also explored and discussed. This study provides room for future researchers to empirically investigate the proposed dimensions and their impacts on real use-cases/ pilots of BCT in the SCM area.

Although this study reveals valuable findings, it has limitations. Our study is an SLR, relying on prior studies to extract our findings, and due to the novelty of the research area, it is only based on 139 chosen studies. For example, BCT features have been identified in case studies (van Hoek 2019), and the benefits and challenges of BCT application have been identified based on interviews with SC experts (Wang et al. 2019a, b). Our findings are thus limited by the prior studies reviewed, including the methodologies used in prior studies. Therefore, it is crucial to further explore the field based on empirically collected data, using various data collection techniques, not limiting the study to be quantitative or qualitative.

We hope that this study will help create a fresh perspective on the dimensions of BCT adoption in the SC context and reveal new opportunities for managers and firms to understand the interrelations among dimensions and the probable advantages, disadvantages, and constraints of adopting such novel and disruptive technology.