Skip to main content
Log in

RETRACTED ARTICLE: Three-tier supply chain on temperature control for fresh agricultural products using new differential game model under two decision-making situations

  • Published:
Operations Management Research Aims and scope Submit manuscript

This article was retracted on 10 February 2024

This article has been updated

Abstract

Freshness makes the supply chain of fresh agricultural products a concern of consumers. This paper aims to point out how temperature control can improve the freshness of fresh agricultural products and the profits of each member and the whole supply chain. This paper constructs the freshness dynamic game model based on temperature control input and the demand function of fresh agricultural products through the differential game method. It also discusses the impact of consumer preference and discount rate on the profits of fresh agricultural products operating enterprises under centralized decision-making and decentralized decision-making. The changes in the profits of the fresh agricultural products supply chain under the coordination mechanism of “mutual cost-sharing with fixed compensation contract”. The results show that under decentralized decision-making when the profit of the fresh produce retailer is higher than the profit of the supplier or third-party logistics service provider, the retailer is willing to bear a certain proportion of the cost. Moreover, consumer preference can help the company to promote the three-level supply chain of fresh agricultural products to realize a virtuous cycle of “increasing investment in temperature control-prolonging the preservation period of fresh agricultural products-strengthening consumer preference-increasing market demand-improving the members and overall profits of the supply chain”. in addition, under certain conditions, the coordination mechanism of “mutual cost-sharing contract with fixed subsidies” can optimize the temperature control investment level and consumer preference of retailers, suppliers and 3PL, and improve the overall supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Aung MM, Chang YS (2014) Temperature management for the quality assurance of a perishable food supply chain. Food Control 40:198–207

    Article  Google Scholar 

  • Cai X, Chen J, Xiao Y et al (2010) Optimization and coordination of fresh product supply chains with freshness-keeping effort. Prod Oper Manag 19:261–278

    Article  Google Scholar 

  • Carrillo-Rodriguez L, Gallardo RK, Yue C et al (2013) Consumer preferences for apple quality traits. Agric Appl Econ Assoc 1–17

  • Choi MJ, Abduzukhurov T, Park DH et al (2018) Effects of deep freezing temperature for long-term storage on quality characteristics and freshness of lamb meat. Korean J Food Sci Anim Resour 38:959–969

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu Z, Hou Y, Wang Y (2020) Examining Guanxi as an environmental-dependency-coping strategy in China: a 3PL provider’s perspective. Int J Log Res Appl 24(5):511–529

    Article  Google Scholar 

  • Dorato P (1983) Optimal temperature control of solar energy systems.Sol Energy 30(2):147–153

  • Ferguson M, Ketzenberg ME (2006) Information sharing to improve retail product freshness of perishables. Prod Oper Manag 15:57–73

    Article  Google Scholar 

  • Galagan Y, Su WF (2008) Fadable ink for time-temperature control of food freshness: Novel new time-temperature indicator. Food Res Int 41:653–657

    Article  CAS  Google Scholar 

  • Griffith R, O’Connell M, Smith K (2015) Relative prices, consumer preferences, and the demand for food. Oxf Rev Econ Policy 31:116–130

    Article  Google Scholar 

  • Gu B, Fu Y, Ye J (2021) Joint optimization and coordination of freshproduct supply chains with quality-improvement effort and fresh-keeping effort.Qual Technol Quan Manage 18:20–38

  • Kasprzyk A, Jawarska K et al (2010) Evaluation of factors determining consumer preferences relating to pork quality. Annales Universitatis Mariae Curie-Skłodowska, Sectio EE Zootechnica 28:1–8

    Google Scholar 

  • Kumar D, Prasad K (2021) Two warehouse dispatching policies for perishable items with freshness efforts, inflationary conditions and partial backlogging. Oper Manage Res. https://doi.org/10.1007/s12063-020-00168-7

    Article  Google Scholar 

  • Liu C, Chen W, Zhou Q et al (2021) Modelling dynamic freshness-keeping effort over a finite time horizon in a two-echelon online fresh product supply chain. Eur J Oper Res 293:511–528

    Article  MathSciNet  Google Scholar 

  • Liu P, Wang S (2021) Logistics outsourcing of fresh enterprises considering fresh-keeping efforts based on evolutionary game analysis. IEEE Access 99:25659–32570

    Article  Google Scholar 

  • Mees HO, Lin X, Negenborn RR (2018) Towards a flexible banana supply chain: Dynamic reefer temperature management for reduced energy consumption and assured product quality. International Conference on Dynamics in Logistics. Springer, Cham

  • Mirzabeiki V, Holmström J, Sjöholm P (2012) Aligning organisational interests in designing rail-wagon tracking. Oper Manag Res 5:101–115

    Article  Google Scholar 

  • Mukherjee AA, Singh RK, Mishra R, Bag S (2021) Application of blockchain technology for sustainability development in agricultural supply chain: Justification framework. Oper Manag Res. https://doi.org/10.1007/s12063-021-00180-5

  • Peneau S, Brockhoff PB, Escher F et al (2007) A comprehensive approach to evaluate the freshness of strawberries and carrots. Postharvest Biol Technol 45:20–29

    Article  Google Scholar 

  • Piramuthu S, Zhou W (2013) Rfid and perishable inventory management with shelf-space and freshness dependent demand. Int J Prod Econ 144(2):635–640

    Article  Google Scholar 

  • Prockl G, Pflaum A, Kotzab H (2012) 3pl factories or lernstatts? Vlue-creation models for 3pl service providers. Int J Phys Distrib Logist Manag 42(6):544–561

    Article  Google Scholar 

  • Rong A, Akkerman R, Grunow M (2011) An optimization approach for managing fresh food quality throughout the supply chain. Int J Prod Econ 131:421–429

    Article  Google Scholar 

  • Schmeiser S (2014) Consumer preference changes in the logit demand model. Appl Econ Lett 21:463–465

    Article  Google Scholar 

  • Siddh MM, Kumar S, Soni G, Jain V, Chandra C, Jain R, Sharma MK, Kazancoglu Y (2021) Impact of agri-fresh food supply chain quality practices on organizational sustainability. Oper Manag Res 1–20. https://doi.org/10.1007/s12063-021-00196-x

  • Song Z, He S (2018) Contract coordination of new fresh produce three-layer supply chain. Ind Manag Data Syst 119(1):148–169

    Article  Google Scholar 

  • Villalobos JR, Soto-Silva WE, González-Araya RG (2019) Research directions in technology development to support real-time decisions of fresh produce logistics: a review and research agenda. Comput Electron Agric 167

  • Wang G, Ding P, Chen H et al (2020) Green fresh product cost sharing contracts considering freshness-keeping effort. Soft Comput 24:2671–2691

    Article  Google Scholar 

  • Wang X, Li D (2012) A dynamic product quality evaluation based pricing model for perishable food supply chains. Omega 40:906–917

  • Wu Y, Wang J, Li C (2019) Decisions of supply chain considering chain-to-chain competition and service negative spillover effect. Sustainability 11(6):1612

    Article  Google Scholar 

  • Xu G, Wu H, Liu Y et al (2020) A research on fresh-keeping strategies for fresh agricultural products from the perspective of green transportation. Discrete Dyn Nat Soc 1307170

  • Yadav S, Luthra S, Garg D (2020) Internet of things (IoT) based coordination system in agri-food supply chain: Development of an efficient framework using DEMATEL-ism. Oper Manag Res 1–27. https://doi.org/10.1007/s12063-020-00164-x

  • Yan B, Fan J, Cai C, Fang J (2020b) Supply chain coordination of fresh agri-products based on value loss. Oper Manag Res 13(3):185–196

    Article  Google Scholar 

  • Yan B, Han L, Chen Y et al (2020c) Dynamic channel decision-making of fresh agricultural product companies considering consumer convenience preferences. RAIRO-Oper Res 55:S1317–S1338

    Article  MathSciNet  Google Scholar 

  • Yan B, Liu G, Wu X et al (2021) Decision-making on the supply chain of fresh agricultural products with two-period price and option contract. Asia Pac J Oper Res 38 (1): 2050038

  • Yan B, Wu J, Jin Z et al (2020a) Decision-making of fresh agricultural product supply chain considering the manufacturer's fairness concerns. 4OR 18(1):91–122

  • Yang L, Tang R (2019) Comparisons of sales modes for a fresh product supply chain with freshness-keeping effort. Transport Res Part e: Logis Transport Rev 125:425–448

    Article  Google Scholar 

  • Yang SH, Panjaitanb BP, Ujiie K et al (2021) Comparison of food values for consumers’ preferences on imported fruits and vegetables within Japan, Taiwan, and Indonesia. Food Qual Pref 87:104042

Download references

Funding

This paper was funded by “The research was supported by the Open Fund of Sichuan Oil and Gas Development Research Center”(No. SKB21-01).

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to this article.

Corresponding author

Correspondence to GuoHua Zhou.

Ethics declarations

Consent for publication

We state that this article is not under consideration at any other journal and if it gets accepted, we fully consent in publish in in Operations Management Research (OMR)—Springer.

Conflicts of interest

There is no any kind of conflict and competing interests.

Rights and permissions

Reprints and Permissions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12063-024-00451-x

Appendices

Appendix 1

Proof: The optimal profit value function of the fresh produce supply chain system at time t is: \({J}_{FASC1}^{*}\left({T}_{s1},{T}_{r1},{T}_{o1}\right)={e}^{-\rho t}{V}_{1}(G,E)\). Among them, \({V}_{1}(G,E)\) for any \(G>0\), and \(E>0\)(\({V}_{1G},{V}_{1E}\) and the existence of the first derivative) satisfy the HJB equation:

$$\begin{aligned}\rho {V}_{1}&=\underset{{T}_{s1},{T}_{r1},{T}_{o1}}{\mathrm{max}}\{p\left(a-bp\right)\left(\chi E+\theta G\right)-\frac{{\eta }^{1}}{2}{T}_{s1}^{2}-\frac{{\eta }^{2}}{2}{T}_{r1}^{2}-\frac{{\eta }^{2}}{2}{T}_{o1}^{2}+{V}_{1G}^{{\prime}}\\&\left({\lambda }_{s}{T}_{s1}+{\lambda }_{r}{T}_{r1}+{\lambda }_{o}{T}_{o1}-\delta G\right)+{V}_{1E}^{{\prime}}(\alpha G-\beta E)\}\end{aligned}$$
(26)

Invest \({T}_{s1}\) yuan in the temperature control of fresh agricultural products suppliers on the right side of the above formula. Retailer temperature control investment \({T}_{r1}\). The 3PL service provider invested \({T}_{o1}\) in temperature control. Find the first partial derivative and make it equal to zero. Come to:

$$\left\{\begin{array}{c}{T}_{s1}=\frac{{V}_{1G}^{{\prime}}{\lambda }_{s}}{{\eta }^{1}}\\ {T}_{r1}=\frac{{V}_{1G}^{{\prime}}{\lambda }_{r}}{{\eta }^{2}}\\ {T}_{o1}=\frac{{V}_{1G}^{{\prime}}{\lambda }_{o}}{{\eta }^{3}}\end{array}\right.$$
(27)

Substitute Eq. (27) into the HJB equation to sort out, and set \({V}_{1}={d}_{1}G+{d}_{2}E+{d}_{3}\), of which \({d}_{1},{d}_{2},{d}_{3}\) are constants. Then \({V}_{1G}^{{\prime}}={d}_{1},{V}_{1E}^{{\prime}}={d}_{2}\), substituting \({V}_{1G}^{{\prime}}={d}_{1},{V}_{1E}^{{\prime}}={d}_{2}\) into the HJB formula, you can get:

$$\left\{\begin{array}{c}{d}_{1}=\frac{p(a-bp)}{\rho +\delta }\left(\theta +\frac{\chi \alpha }{\rho +\beta }\right),{d}_{2}\frac{p(a-bp)\chi }{\rho +\beta }\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\\ {d}_{3}=\left(\frac{{p}^{2}{(a-bp)}^{2}}{2\rho {(\rho +\delta )}^{2}}\right)\left(\frac{{\lambda }_{s}^{2}}{{\eta }^{1}}+\frac{{\lambda }_{r}^{2}}{{\eta }^{2}}+\frac{{\lambda }_{s}^{2}}{{\eta }^{3}}\right){\left(\theta +\frac{\chi \alpha }{\rho +\beta }\right)}^{2}\end{array}\right.$$
(28)

By substituting \({V}_{1G}^{{\prime}}={d}_{1}=\frac{p(a-bp)}{\rho +\delta }\left(\theta +\frac{\chi \alpha }{\rho +\beta }\right)\) into Eq. (27), the optimal input level of temperature control of fresh agricultural products suppliers, retailers and 3PL service providers can be obtained.

Proposition 2 is obtained.

Appendix 2

Proof: The optimal function of the long-term profits of the suppliers, retailers, and 3PL of the fresh produce supply chain at time t is: \({J}_{FASC2S}^{*}\left({T}_{s2}\right)={e}^{-\rho t}{V}_{2S}(G,E)\), \({J}_{FASC2R}^{*}\left({T}_{r2}\right)={e}^{-\rho t}{V}_{2R}(G,E)\), \({J}_{FASC2O}^{*}\left({T}_{o2}\right)={e}^{-\rho t}{V}_{2O}(G,E)\). Among them, \({V}_{2S}(G,E)\), \({V}_{2R}(G,E)\), \({V}_{2O}(G,E)\) for any \(G>0\), and \(E>0\) satisfy the HJB equation:

$$\left\{\begin{array}{c}\rho {V}_{2S}\left(G,E\right)=\underset{{T}_{s2}}{\mathrm{max}}\left\{w\left(a-bp\right)\left(\theta G+\chi E\right)-\frac{{\eta }^{1}}{2}{T}_{s2}^{2}+{{V}_{2SG}^{\prime}}\left({\lambda }_{s}{T}_{s2}+{\lambda }_{r}{T}_{r2}+{\lambda }_{o}{T}_{o2}-\delta G\right)+{{V}_{2SE}^{\prime}}(\alpha G-\beta E)\right\}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\\ \rho {V}_{2R}\left(G,E\right)=\underset{{T}_{r2}}{\mathrm{max}}\left\{(p-w-\xi )\left(a-bp\right)\left(\theta G+\chi E\right)-\frac{{\eta }^{2}}{2}{T}_{r2}^{2}+{{V}_{2RG}^{\prime}}\left({\lambda }_{s}{T}_{s2}+{\lambda }_{r}{T}_{r2}+{\lambda }_{o}{T}_{o2}-\delta G\right)+{{V}_{2RE}^{\prime}}(\alpha G-\beta E)\right\}\\ \rho {V}_{2O}\left(G,E\right)=\underset{{T}_{o2}}{\mathrm{max}}\left\{\xi \left(a-bp\right)\left(\theta G+\chi E\right)-\frac{{\eta }^{2}}{2}{T}_{o2}^{2}+{{V}_{2OG}^{\prime}}\left({\lambda }_{s}{T}_{s2}+{\lambda }_{r}{T}_{r2}+{\lambda }_{o}{T}_{o2}-\delta G\right)+{{V}_{2OE}^{\prime}}(\alpha G-\beta E)\right\}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\end{array}\right.$$
(29)

Find the first-order partial derivative of \({T}_{s2},{T}_{r2},{T}_{o2}\) of fresh agricultural products suppliers, retailers and 3PL on the right side of Eq. (29), and make it equal to zero, and get:

$$\left\{\begin{array}{c}{T}_{s2}=\frac{{\lambda }_{s}{V}_{2SG}^{\prime}}{{\eta }^{1}}\\ {T}_{r2}=\frac{{\lambda }_{r}{V}_{2RG}^{\prime}}{{\eta }^{2}}\\ {T}_{o2}=\frac{{\lambda }_{o}{V}_{1OG}^{\prime}}{{\eta }^{3}}\end{array}\right.$$
(30)

By substituting \({T}_{s2},{T}_{r2},{T}_{o2}\) into Eq. (31), we can get the following results:

$$\left\{\begin{array}{c}\rho {V}_{2S}=\left(w\left(a-bp\right)\theta -{{V}_{2SG}^{\prime}}\delta +{{V}_{2SE}^{\prime}}\alpha \right)G+\left(w\left(a-bp\right)\chi -{{V}_{2SE}^{\prime}}\beta \right)E+\frac{{V}_{2SG}^{\prime{2}}{\lambda }_{s}^{2}}{2{\eta }^{1}}+\frac{{{V}_{2SG}^{\prime}}{{V}_{2RG}^{\prime}}{\lambda }_{r}^{2}}{{\eta }^{2}}+\frac{{{V}_{2SG}^{\prime}}{{V}_{2OG}^{\prime}}{\lambda }_{o}^{2}}{{\eta }^{3}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\\ \rho {V}_{2R}=\left(\left(p-w-\xi \right)(a-bp)\theta -{{V}_{2RG}^{\prime}}\delta +{{V}_{2RE}^{\prime}}\alpha \right)G+\left((p-w-\xi )\left(a-bp\right)\chi -{{V}_{2RE}^{\prime}}\beta \right)E+\frac{{{V}_{2RG}^{\prime}}{{V}_{2SG}^{\prime}}{\lambda }_{s}^{2}}{{\eta }^{1}}+\frac{{{V}_{2RG}^{\prime{2}}}{\lambda }_{r}^{2}}{2{\eta }^{2}}+\frac{{{V}_{2RG}^{\prime}}{{V}_{2OG}^{\prime}}{\lambda }_{o}^{2}}{{\eta }^{3}}\\ \rho {V}_{2O}=\left(\xi (a-bp)\theta -{{V}_{2OG}^{\prime}}\delta +{{V}_{2OE}^{\prime}}\alpha \right)G+\left(\xi \left(a-bp\right)\chi -{{V}_{2RE}^{\prime}}\beta \right)E+\frac{{{V}_{2OG}^{\prime}}{{V}_{2SG}^{\prime}}{\lambda }_{s}^{2}}{{\eta }^{1}}+\frac{{{V}_{2OG}^{\prime}}{{V}_{2RG}^{\prime}}{\lambda }_{r}^{2}}{{\eta }^{2}}+\frac{{V}_{2OG}^{\prime{2}}{\lambda }_{o}^{2}}{2{\eta }^{3}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\;\;\;\;\end{array}\right.$$
(31)

Therefore, let \({V}_{2S}\left(G,E\right)={k}_{1}G+{k}_{2}E+{k}_{3}\), \({V}_{2O}\left(G,E\right)={f}_{1}G+{f}_{2}E+{f}_{3}\), \({k}_{1},{k}_{2},{k}_{3},{l}_{1},{l}_{2},{l}_{3},{f}_{1},{f}_{2},{f}_{3}\) of which are all constants, then \({{V}_{2SG}^{\prime}}={k}_{1}\), \({{V}_{2SE}^{\prime}}={k}_{2}\), \({{V}_{2RG}^{\prime}}={l}_{1}\), \({{V}_{2RE}^{\prime}}={l}_{2}\), \({{V}_{2OG}^{\prime}}={f}_{1}\), \({{V}_{2OE}^{\prime}}={f}_{2}\) are substituted into the Eq. (31), which can be obtained by the method of undetermined coefficients:

$$\left\{\begin{array}{c}{k}_{1}=\frac{w\left(a-bp\right)}{\rho +\delta }\left(\theta +\frac{\chi \alpha }{\rho +\beta }\right),{k}_{2}=\frac{w\left(a-bp\right)\chi }{\rho +\beta }\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\\ {k}_{3}=\left(\frac{w{\left(a-bp\right)}^{2}}{\rho {\left(\rho +\delta \right)}^{2}}\right)\left(\frac{w{\lambda }_{s}^{2}}{2{\eta }^{1}}+\frac{\left(p-w-\xi \right){\lambda }_{r}^{2}}{{\eta }^{2}}+\frac{\xi {\lambda }_{o}^{2}}{{\eta }^{3}}\right){\left(\theta +\frac{\chi \alpha }{\rho +\beta }\right)}^{2}\end{array}\right.$$
(32)
$$\left\{\begin{array}{c}{l}_{1}=\frac{\left(p-w-\xi \right)\left(a-bp\right)}{\rho +\delta }\left(\theta +\frac{\chi \alpha }{\rho +\beta }\right),{l}_{2}=\frac{\left(p-w-\xi \right)\left(a-bp\right)\chi }{\rho +\beta }\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\\,\\ {l}_{3}=\left(\frac{\left(p-w-\xi \right){\left(a-bp\right)}^{2}}{\rho {\left(\rho +\delta \right)}^{2}}\right)\left(\frac{w{\lambda }_{s}^{2}}{{\eta }^{1}}+\frac{\left(p-w-\xi \right){\lambda }_{r}^{2}}{2{\eta }^{2}}+\frac{\xi {\lambda }_{o}^{2}}{{\eta }^{3}}\right){\left(\theta +\frac{\chi \alpha }{\rho +\beta }\right)}^{2}\end{array}\right.$$
(33)
$$\left\{\begin{array}{c}{f}_{1}=\frac{\xi \left(a-bp\right)}{\rho +\delta }\left(\theta +\frac{\chi \alpha }{\rho +\beta }\right),{f}_{2}=\frac{\xi \left(a-bp\right)\chi }{\rho +\beta }\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\\ {f}_{3}=\left(\frac{\xi {\left(a-bp\right)}^{2}}{\rho {\left(\rho +\delta \right)}^{2}}\right)\left(\frac{w{\lambda }_{s}^{2}}{{\eta }^{1}}+\frac{\left(p-w-\xi \right){\lambda }_{r}^{2}}{{\eta }^{2}}+\frac{\xi {\lambda }_{o}^{2}}{2{\eta }^{3}}\right){\left(\theta +\frac{\chi \alpha }{\rho +\beta }\right)}^{2}\end{array}\right.$$
(34)

However, the values of \({k}_{1},{l}_{1},{f}_{1}\) are substituted into Eq. (30). The optimal temperature control input levels (\({T}_{s2},{T}_{r2},{T}_{o2}\)) of retailers, suppliers and 3PL service providers 3PL in the three-level supply chain of fresh agricultural products under decentralized decision-making based on wholesale price contract can be obtained. The certificate is completed.

Proposition 4 can be obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Zhou, G. & Xu, H. RETRACTED ARTICLE: Three-tier supply chain on temperature control for fresh agricultural products using new differential game model under two decision-making situations. Oper Manag Res 15, 1028–1047 (2022). https://doi.org/10.1007/s12063-021-00244-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12063-021-00244-6

Keywords

Navigation