Skip to main content

Advertisement

Log in

Will policies to promote energy efficiency help or hinder achieving a 1.5 °C climate target?

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

There is a large literature suggesting that improvements in energy efficiency support efforts at climate mitigation. Addressing a conceptual gap in that literature, however, we evaluate whether there are any conditions under which policies to promote improvements in energy efficiency could be counterproductive to efforts to limit climate change to 1.5 °C global warming from pre-industrial times. We identify three conditions under which this could be the case. The first condition is if policies for energy efficiency have a political opportunity cost, in terms of crowding out or delaying policies aimed at decarbonizing energy supply. There is an extensive literature in the fields of political science and policy studies to suggest that this is possible, but there have been no studies examining whether it has actually happened or is likely to happen in the future. The second condition is if investments in energy efficiency improvements come at a higher cost, per unit of fossil energy avoided, than do investments in new renewable energy supply. Current cost estimates suggest that there are some energy efficiency investments for which this is the case, but it is difficult to predict whether this will remain the case in the future. The third condition is if policies for energy efficiency, or specific investments in energy efficiency, were to delay the complete decarbonization of energy supply by more than some critical value. We show that critical delay is quite short—measured in weeks to months—in the case of a 1.5 °C temperature target, assuming constrained availability of negative emission technologies. It is impossible to say whether any of these conditions is likely, but in theory, each of them would appear to be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American Economic Review, 102, 131–166.

    Article  Google Scholar 

  • Aghion, P., Dechezleprêtre, A., Hémous, D., Martin, R., & Van Reenen, J. (2016). Carbon taxes, path dependency, and directed technical change: evidence from the auto industry. Journal of Political Economy, 124, 1–51.

    Article  Google Scholar 

  • Backlund, S., Thollander, P., Palm, J., & Ottosson, M. (2012). Extending the energy efficiency gap. Energy Policy, 51, 392–396. https://doi.org/10.1016/j.enpol.2012.08.042.

    Article  Google Scholar 

  • Banerjee, R., Cong, Y., Gielen, D., Jannuzzi, G., Maréchal, F., McKane, A.T., Rosen, M.A., van Es, D., Worrell, E., (2012). Chapter 8—Energy end use: Industry, in: Global energy assessment—toward a sustainable future. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 513–574.

  • Bertram, C., Johnson, N., Luderer, G., Riahi, K., Isaac, M., & Eom, J. (2015). Carbon lock-in through capital stock inertia associated with weak near-term climate policies. Technological Forecasting and Social Change, 90, 62–72. https://doi.org/10.1016/j.techfore.2013.10.001.

    Article  Google Scholar 

  • Blanco, G., Gerlach, R., Suh, S., Barrett, J., de Coninck, H. C., Diaz Morejon, C., Mathur, R., Nakicenovic, N., Ofosu Ahenkora, A., Pan, J., Pathak, H., Richels, R., Smith, S., Stern, D., Toth, F., & Zhou, P. (2014). Drivers, trends and mitigation, in: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK and New York USA, pp. In 351–411.

    Google Scholar 

  • Blyth, W., Bradley, R., Bunn, D., Clarke, C., Wilson, T., & Yang, M. (2007). Investment risks under uncertain climate change policy. Energy Policy, 35, 5766–5773. https://doi.org/10.1016/j.enpol.2007.05.030.

    Article  Google Scholar 

  • Bolton, D., 2015. Sweden wants to become the first fossil fuel-free country in the world—how will it work? The Independent.

    Google Scholar 

  • Bowen, A., Campiglio, E., & Tavoni, M. (2014). A macroeconomic perspective on climate change mitigation: Meeting the financing challenge. Clim. Change Econ., 05, 1440005. https://doi.org/10.1142/S2010007814400053.

    Article  Google Scholar 

  • Buchner, B., Falconer, A., Herve-Mignucci, M., Trabacchi, C., Brinkman, M., (2011). The landscape of climate finance. Climate Policy Initiative, Venice.

  • Bürer, M. J., & Wüstenhagen, R. (2009). Which renewable energy policy is a venture capitalist’s best friend? Empirical evidence from a survey of international cleantech investors. Energy Policy, 37, 4997–5006. https://doi.org/10.1016/j.enpol.2009.06.071.

    Article  Google Scholar 

  • Calel, R., 2018. Adopt or innovate: Understanding technological responses to cap-and-trade.

    Google Scholar 

  • Calel, R., & Dechezleprêtre, A. (2016). Environmental tchnology and directed technological change: Evidence from the European carbon market. The Review of Economics and Statistics, 98, 173–191.

    Article  Google Scholar 

  • Chong, D., & Druckman, J. (2007). Framing theory. Annual Review of Political Science, 10, 103–126.

    Article  Google Scholar 

  • Chow, J., Kopp, R.J., Portney, P.R. (2003). Energy resources and global development. Science %R https://doi.org/10.1126/science.1091939 302, 1528–1531.

  • CIA. (2016). World Factbook 2014–15. Washington DC: Central Intelligence Agency.

    Google Scholar 

  • Díaz, P., van Vliet, O., & Patt, A. (2017). Do we need gas as a bridging fuel? A case study of the electricity system of Switzerland. Energies, 10. https://doi.org/10.3390/en10070861.

  • Edenhofer, O., Pichs-Madruga, R., Sokona, Y. (2014). IPCC, 2014: Climate change 2014: Mitigation of climate change. Cambridge University Press, Cambridge UK and New York USA.

  • Eskeland, G., Criqui, P., Jochem, E., & Neufeldt, H. (2010). Transforming the European energy system. In M. Hulme & H. Neufeldt (Eds.), Making climate change work for us: European perspectives on adaptation and mitigation strategies (pp. 165–199). Cambridge: Cambridge University Press.

    Google Scholar 

  • Fisher-Vanden, K., Jefferson, G. H., Liu, H., & Tao, Q. (2004). What is driving China’s decline in energy intensity? Resource and Energy Economics, 26, 77–97. https://doi.org/10.1016/j.reseneeco.2003.07.002.

    Article  Google Scholar 

  • Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quere, C., Raupach, M. R., Sharifi, A., Smith, P., & Yamagata, Y. (2014). Betting on negative emissions. Nature Climate Change, 4, 850–853.

    Article  Google Scholar 

  • Fuss, S., Jones, C., Kraxner, F., Peters, G., Smith, P., Tavoni, M., Van Vuuren, D., Canadell, J., Jackson, R., & Milne, J. (2016). Research priorities for negative emissions. Environmental Research Letters, 11, 115007.

    Article  Google Scholar 

  • G20, 2017. G20 Hamburg: Climate and Energy Action Plan for Growth.

  • GEA. (2012). Global energy assessment—toward a sustainable future. Cambridge University press, Cambridge, UK and New York, NY. In USA and the international institute for applied systems analysis. Austria: Laxenburg.

    Google Scholar 

  • Geels, F. (2005). Technological transition and system innovations: A co-evolutionary and socio-technical analysis. In Edward Elgar. UK: Cheltenham.

    Google Scholar 

  • Gillingham, K., Kotchen, M. J., Rapson, D. S., & Wagner, G. (2013). The rebound effect is overplayed. Nature, 493, 475–476.

    Article  Google Scholar 

  • Gillingham, K., & Palmer, K. (2014). Bridging the energy efficiency gap: Policy insights from economic theory and empirical evidence. Review of Environmental Economics and Policy, 8, 18–38. https://doi.org/10.1093/reep/ret021.

    Article  Google Scholar 

  • Gillingham, K., Rapson, D., & Wagner, G. (2016). The rebound effect and energy efficiency policy. Review of Environmental Economics and Policy, 10, 68–88. https://doi.org/10.1093/reep/rev017.

    Article  Google Scholar 

  • Grubb, M. (2014). Planetary economics: Energy, climate change and the three domains of sustainable development. London: Earthscan.

    Book  Google Scholar 

  • Grübler, A., Nakicenovic, N., & Victor, D. (1999). Dynamics of energy technologies and global change. Energy Policy, 27, 247–280.

    Article  Google Scholar 

  • Gupta, S., Harnisch, J., Barua, D., Chingambo, L., Frankel, P., Garrido, R., Gomez-Echeverri, L., Haites, E., Huang, Y., Kopp, R., Lefevre, B., Machado-Filho, H., & Massetti, E. (2014). Cross-cutting investment and finance issues. In Climate change 2014. New York: Cambridge University Press.

    Google Scholar 

  • Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243–1248.

    Article  Google Scholar 

  • Harvey, L. (2013). Recent advances in sustainable buildings: Review of the energy and cost performance of the state-of-the-art best practices from around the world. Annual Review of Environment and Resources, 38, 281–309.

    Article  Google Scholar 

  • Held, A., Ragwitz, M., & Haas, R. (2006). On the success of policy strategies for the promotion of electricity from renewable energy sources in the EU. Energy & Environment, 17, 849–868. https://doi.org/10.1260/095830506779398849.

    Article  Google Scholar 

  • Howlett, M., McConnell, A., & Perl, A. (2016). Moving policy theory forward: Connecting multiple stream and advocacy coalition frameworks to policy cycle models of analysis. Australian Journal of Public Administration, 76, 65–79. https://doi.org/10.1111/1467-8500.12191.

    Article  Google Scholar 

  • Huang, Y., Barker, T. (2009). The clean development mechanism and sustainable development: A panel data analysis.

  • IEA. (2016). Energy efficiency market report 2016. Paris: International Energy Agency.

    Google Scholar 

  • Ingold, K., Fischer, M., & Cairney, P. (2016). Drivers for policy agreement in nascent subsystems: An application of the advocacy coalition framework to fracking policy in Switzerland and the UK. Policy Studies Journal, 45, 442–463. https://doi.org/10.1111/psj.12173.

    Article  Google Scholar 

  • IRENA (2016). The power to change: solar and wind cost reduction potential to 2025.

  • Jaffe, A., Newell, R., & Stavins, R. (2003). Technological change and the environment. In Handbook of environmental economics (pp. 461–516). Elsevier Science B.V.

  • Johnstone, N., Hascic, I., & Popp, D. (2010). Renewable energy policies and technological innovation: Evidence based on patent counts. Environmental and Resource Economics, 45, 133–155.

    Article  Google Scholar 

  • Kahn Ribeiro, S., Figueroa, M. J., Creutzig, F., Dubeux, C., Hupe, J., & Kobayashi, S. (2012). Chapter 9—Energy end-use: Transport, in: Global energy assessment—Toward a sustainable future. Cambridge University press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis (pp. 575–648). Austria: Laxenburg.

    Google Scholar 

  • Karali, N., Park, W., McNeil, M. (2015). Using learning curves on energy-efficient technologies to estimate future energy savings and emissions reduction potentials in the U.S. iron and steel industry (No. LBNL-184179). Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA.

  • Kingdon, J. (1995). Agendas, alternatives, and public policies (2nd ed.). New York: Longman.

    Google Scholar 

  • Kivimaa, P., & Mickwitz, P. (2011). Public policy as a part of transforming energy systems: Framing bioenergy in Finnish energy policy. Journal of Cleaner Production, 19, 1812–1821. https://doi.org/10.1016/j.jclepro.2011.02.004.

    Article  Google Scholar 

  • Knight, E. (2010). The economic geography of clean tech venture capital.

  • Labordena, M., Patt, A., Bazilian, M., Howells, M., & Lilliestam, J. (2017). Impact of political and economic barriers for concentrating solar power in sub-Saharan Africa. Energy Policy, 102, 52–72. https://doi.org/10.1016/j.enpol.2016.12.008.

    Article  Google Scholar 

  • Lilliestam, J., Ellenbeck, S., Karakosta, C., & Caldés, N. (2016). Understanding the absence of renewable electricity imports to the European Union. International Journal of Energy Sector Man, 10, 291–311. https://doi.org/10.1108/IJESM-10-2014-0002.

    Article  Google Scholar 

  • Lilliestam, J., Labordena, M., Patt, A., & Pfenninger, S. (2017). Empirically observed learning rates for concentrating solar power and their responses to regime change. Nature Energy, 2, 17094.

    Article  Google Scholar 

  • Lucon, O., Ürge-Vorsatz, D., Ahmed, A., Akbari, H., Bertoldi, P., Cabeza, L., Eyre, N., Gadgil, A., Harvey, L., Jiang, Y., Liphoto, E., Mirasgedis, S., Murakami, S., Parikh, J., Pyke, C., & Vilarino, M. (2014). Buildings, in: Climate change 2014. New York: Cambridge University Press.

    Google Scholar 

  • Luderer, G., Pietzcker, R., Bertram, C., Kriegler, E., Meinshausen, M., & Edenhofer, O. (2013). Economic mitigation challenges: How further delay closes the door for achieving climate targets. Environmental Research Letters, 8, 034033.

    Article  Google Scholar 

  • Madlener, R., & Alcott, B. (2009). Energy rebound and economic growth: A review of the main issues and research needs. Energy, 34, 370–376 https://doi.org/10.1016/j.energy.2008.10.011.

    Article  Google Scholar 

  • MCC (2017). That’s how fast the carbon clock is ticking. Mercator Research Institute on Climate Commons and Climate Change: Research.

  • Neij, L. (2008). Cost development of future technologies for power generation: A study based on experience curves and complementary bottom-up assessments. Energy Policy, 36, 2200–2211.

    Article  Google Scholar 

  • Noailly, J., & Smeets, R. (2015). Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data. Journal of Environmental Economics and Management, 72, 15–37. https://doi.org/10.1016/j.jeem.2015.03.004.

    Article  Google Scholar 

  • Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5, 329–332.

    Article  Google Scholar 

  • Obama, B. (2017). The irreversible momentum of clean energy. Science, 355, 126–129. https://doi.org/10.1126/science.aam6284.

    Article  Google Scholar 

  • OECD. (2015). Mapping channels to mobilize institutional investment in sustainable energy, green finance and investment. Paris: OECD Publishing.

    Google Scholar 

  • Ondraczek, J., Komendantova, N., & Patt, A. (2015). WACC the dog: The effect of financing costs on the levelized cost of solar PV power. Renewable Energy, 75, 888–898. https://doi.org/10.1016/j.renene.2014.10.053.

    Article  Google Scholar 

  • Patt, A. (2015). Transforming energy: Solving climate change with technology policy. New York: Cambridge University Press.

    Book  Google Scholar 

  • Patterson, M. G. (1996). What is energy efficiency? Energy Policy, 24, 377–390. https://doi.org/10.1016/0301-4215(96)00017-1.

    Article  Google Scholar 

  • Pfenninger, S., Gauche, P., Lilliestam, J., Damerau, K., Wagner, F., & Patt, A. (2014). Potential for concentrating solar power to provide baseload and dispatchable power. Nature Climate Change, 4, 689–692.

    Article  Google Scholar 

  • Pietzcker, R. C., Ueckerdt, F., Carrara, S., de Boer, H. S., Després, J., Fujimori, S., Johnson, N., Kitous, A., Scholz, Y., Sullivan, P., & Luderer, G. (2017). System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches. Energy Economics, 64, 583–599. https://doi.org/10.1016/j.eneco.2016.11.018.

    Article  Google Scholar 

  • Portney, P., & Stavins, R. (2000). Public policies for environmental protection. Washington: Resources for the Future.

    Google Scholar 

  • Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J., Schaeffer, M., Edmonds, J., Isaac, M., Krey, V., Longden, T., Luderer, G., Méjean, A., McCollum, D. L., Mima, S., Turton, H., van Vuuren, D. P., Wada, K., Bosetti, V., Capros, P., Criqui, P., Hamdi-Cherif, M., Kainuma, M., & Edenhofer, O. (2015). Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change, 90, 8–23. https://doi.org/10.1016/j.techfore.2013.09.016.

    Article  Google Scholar 

  • Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 [deg]C. Nature Clim. Change, 5, 519–527.

    Article  Google Scholar 

  • Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., & Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 8, 325–332. https://doi.org/10.1038/s41558-018-0091-3.

    Article  Google Scholar 

  • Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N. P., van Vuuren, D. P., Riahi, K., Allen, M., & Knutti, R. (2016). Differences between carbon budget estimates unravelled. Nature Climate Change, 6, 245–252.

    Article  Google Scholar 

  • Rubin, E. S., Azevedo, I. M. L., Jaramillo, P., & Yeh, S. (2015). A review of learning rates for electricity supply technologies. Energy Policy, 86, 198–218. https://doi.org/10.1016/j.enpol.2015.06.011.

    Article  Google Scholar 

  • Sabatier, P. A. (1988). An advocacy coalition framework of policy change and the role of policy-oriented learning therein. Policy Sciences, 21, 129–168. https://doi.org/10.1007/BF00136406.

    Article  Google Scholar 

  • Schmidt, T. S. (2014). Low-carbon investment risks and de-risking. Nature Climate Change, 4, 237–239.

    Article  Google Scholar 

  • Scholz, Y., Gils, H. C., & Pietzcker, R. C. (2017). Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares. Energy Economics, 64, 568–582. https://doi.org/10.1016/j.eneco.2016.06.021.

    Article  Google Scholar 

  • Scrase, J. I., & Ockwell, D. G. (2010). The role of discourse and linguistic framing effects in sustaining high carbon energy policy—An accessible introduction. Energy Policy, 38, 2225–2233. https://doi.org/10.1016/j.enpol.2009.12.010.

    Article  Google Scholar 

  • Sims, R., Schaeffer, R., Creutzig, F., Cruz-Nunez, X., D’Agosto, M., Dimitriu, D., Meza, M., Fulton, L., Kobayashi, S., Lah, O., McKinnon, A., Newman, P., Ouyang, M., Schauer, J., Sperling, D., Tiwari, G., 2014. Transport, in: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK and New York USA.

  • Skidelsky, R., & Skidelsky, E. (2012). How much is enough: Money and the good life. New York: Other Press.

    Google Scholar 

  • Smith, P., Davis, S.J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R.B., Cowie, A., Kriegler, E., van Vuuren, D.P., Rogelj, J., Ciais, P., Milne, J., Canadell, J.G., McCollum, D., Peters, G., Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W.K., Jonas, M., Jones, C.D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J.R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., Yongsung, C. (2015). Biophysical and economic limits to negative CO2 emissions 6, 42.

  • Smith, S. J., Wei, M., & Sohn, M. D. (2016). A retrospective analysis of compact fluorescent lamp experience curves and their correlations to deployment programs. Energy Policy, 98, 505–512. https://doi.org/10.1016/j.enpol.2016.09.023.

    Article  Google Scholar 

  • Sorrell, S. (2015). Reducing energy demand: A review of issues, challenges and approaches. Renewable and Sustainable Energy Reviews, 47, 74–82. https://doi.org/10.1016/j.rser.2015.03.002.

    Article  Google Scholar 

  • Stulz, R., Tanner, S., & Sigg, R. (2011). Chapter 16 - Swiss 2000-watt society: A sustainable energy vision for the future A2 - Sioshansi, Fereidoon P. In Energy, sustainability and the environment (pp. 477–496). Boston: Butterworth-Heinemann.

    Chapter  Google Scholar 

  • Suh, S. (2006). Are services better for climate change? Environmental Science & Technology, 40, 6555–6560. https://doi.org/10.1021/es0609351.

    Article  Google Scholar 

  • Sustainable Development Commission. (2009). Prosperity without growth. London: British Sustainable Development Commission.

    Google Scholar 

  • United Nations Population Division, 2007. World population prospects: The 2006 revision.

    Google Scholar 

  • Ürge-Vorsatz, D., Eyre, N., Graham, P., Harvey, D., Hertwich, E., Jiang, Y., Kornevall, C., Majumdar, M., McMahon, J.E., Mirasgedis, S., Murakami, S., Novikova, A. (2012). Chapter 10—Energy end-use: Building, in: Global energy assessment—Toward a sustainable future. Cambridge University press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 649–760.

  • Van Buskirk, R., Kanter, C., Gerke, B., & Chu, S. (2014). A retrospective investigation of energy efficiency standards: Policies may have accelerated long term declines in appliance costs. Environmental Research Letters, 9, 114010.

    Article  Google Scholar 

  • van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., van den Berg, M., Bijl, D. L., de Boer, H. S., Daioglou, V., Doelman, J. C., Edelenbosch, O. Y., Harmsen, M., Hof, A. F., & van Sluisveld, M. A. E. (2018). Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change, 8, 391–397. https://doi.org/10.1038/s41558-018-0119-8.

    Article  Google Scholar 

  • Vogt-Schilb, A., & Hallegatte, S. (2014). Marginal abatement cost curves and the optimal timing of mitigation measures. Energy Policy, 66, 645–653. https://doi.org/10.1016/j.enpol.2013.11.045.

    Article  Google Scholar 

  • Voigt, S., De Cian, E., Schymura, M., & Verdolini, E. (2014). Energy intensity developments in 40 major economies: Structural change or technology improvement? Energy Economics, 41, 47–62. https://doi.org/10.1016/j.eneco.2013.10.015.

    Article  Google Scholar 

  • Wang, C., Liao, H., Pan, S.-Y., Zhao, L.-T., & Wei, Y.-M. (2014). The fluctuations of China’s energy intensity: Biased technical change. Applied Energy, 135, 407–414. https://doi.org/10.1016/j.apenergy.2014.06.088.

    Article  Google Scholar 

  • Weible, C. M., & Jenkins-Smith, H. C. (2016). The advocacy coalition framework: An approach for the comparative analysis of contentious policy issues. In B. G. Peters & P. Zittoun (Eds.), Contemporary approaches to public policy: Theories, controversies and perspectives. (pp. 15–34). London: Palgrave Macmillan UK.

    Google Scholar 

  • Weiss, M., Junginger, M., Patel, M. K., & Blok, K. (2010a). A review of experience curve analyses for energy demand technologies. Technological Forecasting and Social Change, 77, 411–428. https://doi.org/10.1016/j.techfore.2009.10.009.

    Article  Google Scholar 

  • Weiss, M., Patel, M. K., Junginger, M., & Blok, K. (2010b). Analyzing price and efficiency dynamics of large appliances with the experience curve approach. Energy Policy, 38, 770–783. https://doi.org/10.1016/j.enpol.2009.10.022.

    Article  Google Scholar 

  • Wilson, C., Grubler, A., Gallagher, K. S., & Nemet, G. F. (2012). Marginalization of end-use technologies in energy innovation for climate protection. Nature Climate Change, 2, 780–788.

    Article  Google Scholar 

  • Wiser, R., Bolinger, M., 2014. 2013 Wind Technologies Market Report. Lawrence Berkeley Laboratory, United States Department of Energy, Berkeley, CA.

  • Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E., & Smith, A. (2016). Expert elicitation survey on future wind energy costs. Nature Energy, 1, 16135. https://doi.org/10.1038/nenergy.2016.135.

    Article  Google Scholar 

  • World Bank (2017). World development indicators.

    Google Scholar 

  • Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2008). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2, 109–123. https://doi.org/10.1007/s12053-008-9032-8.

    Article  Google Scholar 

  • Wurlod, J., Noailly, J. (2016). The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries.

  • York, R., Rosa, E. A., & Dietz, T. (2003). STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46, 351–365. https://doi.org/10.1016/S0921-8009(03)00188-5.

    Article  Google Scholar 

  • Zhao, X., Ma, C., & Hong, D. (2010). Why did China’s energy intensity increase during 1998–2006: Decomposition and policy analysis. Energy Policy, 38, 1379–1388. https://doi.org/10.1016/j.enpol.2009.11.019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Patt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patt, A., van Vliet, O., Lilliestam, J. et al. Will policies to promote energy efficiency help or hinder achieving a 1.5 °C climate target?. Energy Efficiency 12, 551–565 (2019). https://doi.org/10.1007/s12053-018-9715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-018-9715-8

Keywords

Navigation