Skip to main content

Advertisement

Log in

Thermal cooling using low-temperature waste heat: a cost-effective way for industrial companies to improve energy efficiency?

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

As a typical cross-cutting technology, cooling and refrigeration equipment is used for a variety of industrial applications. While cooling is often provided by electric compression cooling systems, thermal cooling systems powered by low-temperature waste heat could improve energy efficiency and promise a technical saving potential corresponding to 0.5 % of the total electricity demand in the German industry. In this paper, we investigate the current and future cost-effectiveness of thermal cooling systems for industrial companies. Our focus is on single-stage, closed absorption and adsorption cooling systems with cooling powers between 40 and 100 kW, which use low-temperature waste heat at temperature levels between 70 °C and 85 °C. We analyse the current and future cost-effectiveness of these alternative cooling systems using annual cooling costs (annuities) and payback times. For a forecast until 2015, we apply the concept of experience curves, identifying learning rates of 14 % (absorption machines) and 17 % (adsorption machines) by an expert survey of the German market. The results indicate that thermal cooling systems are currently only cost-effective under optimistic assumptions (full-time operation, high electricity prices) when compared to electric compression cooling systems. Nevertheless, the cost and efficiency improvements expected for this still young technology mean that thermal cooling systems could be more cost-effective in the future. However, depending on future electricity prices, a high number of operating hours is still crucial to achieve payback times substantially below 4 years which are usually required for energy efficiency measures to be widely adopted in the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The COP is defined as the ratio of cooling output to driving energy. Eicker and Pietruschka (2009) estimate that the average COP of ECCS is 3.0 or below.

  2. For a description of the technical principle of thermal cooling machines, see for example Henning et al. (2009).

  3. See, for example, Blok (2007) or Berglund and Söderholm (2006) for a detailed description of experience curve calculations.

  4. All publicly available information is referenced accordingly.

  5. We did not include directly fired cooling machines as we focus on the use of waste heat.

  6. In Japan alone, 900,000 air-conditioning units are already produced every year for commercial applications using electric compression technology; more than two thirds of these are exported (JRAIA 2010).

  7. The first units with high cooling power date back to the beginning of the 1990s in Germany (several tens of units).

  8. See Blok (2007) for detailed information on how to calculate experience curves.

  9. The structure of the list follows Weiss (2009).

  10. However, this potential has to be realised through active decisions and business leadership.

References

  • Adnot, J., Rivière, P., Marchio, D., Holstrom, M., Naeslund, J., Saba, J., Becirspahic, S., Lopes, C., Böanco, I., Perez-Lombard, L., Ortiz, J., Papakonstantinou, N., & Doukas, P. (2003). Energy efficiency and certification of central air conditioners (EECCAC). Study for the D.G. Transportation-Energy (DGTREN) of the Commission of the E.U.—Volume 1. http://www.cenerg.ensmp.fr/english/themes/mde/pdf/EECCACfinalvol1.pdf. Accessed 25 April 2010.

  • AGEB [Arbeitsgemeinschaft Energiebilanzen] (2011). Energiebilanz der Bundesrepublik Deutschland im Jahr 2008. http://www.ag-energiebilanzen.de/viewpage.php?idpage=63. Accessed 30 September 2011.

  • Alberth, S. (2008). Forecasting technology costs via the experience curve—myth or magic. Technological Forecasting and Social Change, 75, 952–983.

    Article  Google Scholar 

  • Alberts, W. W. (1989). The experience curve doctrine reconsidered. The Journal of Marketing, 1989(53), 36–49.

    Article  Google Scholar 

  • Arrow, K. J. (1962). The economic implications of learning by doing. Review of Economic Studies, 29(3), 155–173.

    Article  Google Scholar 

  • Bass, F. M. (1980). The relationship between diffusion rates, experience curves, and demand elasticities for consumer durable technological innovations. Journal of Business, 53(2), 51–67.

    MathSciNet  Google Scholar 

  • Bauer, H. H. (1986). Das Erfahrungskurvenkonzept. Möglichkeiten und Problematik der Ableitung strategischer Handlungsalternativen. Wirtschaftswissenschaftliches Studium, 15(1), 1–10.

    Google Scholar 

  • Baumgarth, S., Hörner, B., & Reeker, J. (Eds.). (2008). Handbuch der Klimatechnik. Heidelberg: C.F. Müller.

    Google Scholar 

  • BDEW [Bundesverband der Energie- und Wasserwirtschaft] (Ed.) (2008). Studie Energiewirtschaftliches Gesamtkonzept 2030. http://www.ewi.uni-koeln.de/fileadmin/user/Gutachten/2008_Studie_2030_EB_22.08.08_Final.pdf. Accessed 24 April 2010.

  • BEA 2008 [Berliner Energieagentur] (Ed.) (2008). Summerheat-Leitfaden (EU Summerheat Project). http://www.eu-summerheat.net/pdf_files/D6_16_SummerHeat_Guideline_final_de.pdf. Accessed 19 April 2010.

  • BEA 2009 [Berliner Energieagentur] (Ed.) (2009). Meeting cooling demands in SUMMER by applying HEAT from cogeneration. Publishable Report (EU Summerheat Project). http://www.eu-summerheat.net/download_files/Publishable_Report_FINAL.pdf. Accessed 20 April 2010.

  • Bea, F. X., & Haas, J. (2009). Strategisches Management. Stuttgart: Lucius & Lucius.

    Google Scholar 

  • Berglund, C., & Söderholm, P. (2006). Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models. Energy Policy, 34(12), 1344–1356.

    Article  Google Scholar 

  • Blok, K. (2007). Introduction to Energy Analysis. Amsterdam: Techne Press.

    Google Scholar 

  • Claeson Colpier, U., & Cornland, D. (2002). The economics of the combined cycle gas turbine—an experience curve analysis. Energy Policy, 30(4), 309–316.

    Article  Google Scholar 

  • Clarke, L., Weyant, J., & Birky, A. (2006). On the sources of technological change: assessing the evidence. Energy Economics, 2006(28), 579–595.

    Article  Google Scholar 

  • Clausen, J. (2007). Zukunftsmarkt Solares Kühlen. Umweltbundesamt (UBA). http://www.umweltdaten.de/publikationen/fpdf-l/3449.pdf. Accessed 29 March 2010.

  • Cooremans, C. (2011). Make it strategic! Financial investment logic is not enough. Energy Efficiency, 4(4), 473–492.

    Article  Google Scholar 

  • Dale, L., Antinori, C., McNeil, M., McMahon, J. E., & Fujita, K. S. (2009). Retrospective evaluation of appliance price trends. Energy Policy, 37(2), 597–605.

    Article  Google Scholar 

  • Daun, T., Schön, R., Pasquale, U., Hagelstange, R., & Alt, H. J. (2003). Rationelle Energienutzung in der Metallindustrie. Braunschweig: Vieweg.

    Google Scholar 

  • Day, G. S., & Montgomery, D. B. (1983). Diagnosing the experience curve. The Journal of Marketing, 47(2), 44–58.

    Article  Google Scholar 

  • de Almeida, A. T., Ferreira, F. J. T. E., Fong, J., & Fonseca, P. (2008). EUP Lot 11 Motors. Coimbra: University of Coimbra.

    Google Scholar 

  • DENA [Deutsche Energie-Agentur] (Ed.) (2007). Informationsblätter Kältetechnik: Physikalische Grundlagen der Kälteerzeugung. http://www.dena.de/fileadmin/user_upload/Download/Dokumente/Publikationen/Strom/IEE/Infoblaetter_Kaeltetechnik.pdf. Accessed 23 March 2010.

  • DKV [Deutscher Kälte- und Klimatechnischer Verein] (Ed.) (2002). Energiebedarf bei der technischen Erzeugung von Kälte in der Bundesrepublik Deutschland. Hannover.

  • Dutton, J. M., & Thomas, A. (1984). Treating progress functions as managerial opportunity. The Academy of Management Review, 9(2), 235–247.

    Google Scholar 

  • EC [European Commission] (Ed.) (2006). Communication from the Commission. Action Plan for Energy Efficiency: Realising the Potential. COM(2006)545 final. Brussels.

  • Edler, D., Blazejczak, J., Walz, R., Ostertag, K., Eichhammer, W., Angerer, G., Sartorius, C., Doll, C., Büchele, R., Henzelmann, T., & Zelt, T. (2007). Wirtschaftsfaktor Umweltschutz. Vertiefende Analyse zu Umweltschutz und Innovation. Dessau/Berlin: Deutsches Institut für Wirtschaftsforschung (DIW), Fraunhofer Institut für System- und Innovationsforschung (ISI), Roland Berger Strategy Consultants.

  • Eicker, U., & Pietruschka, D. (2009). Optimisation and economics of solar cooling systems. Advances in Building Energy Research, 3(1), 45–82.

    Article  Google Scholar 

  • Elschner, C., Heckemeyer, J. H., & Spengel, C. (2009). Besteuerungsprinzipien und effektive Unternehmenssteuerbelastungen in der Europäischen Union (ZEW Discussion Paper No. 09-034). Zentrum für Europäische Wirtschaftsforschung (ZEW). http://madoc.bib.uni-mannheim.de/madoc/volltexte/2009/2447/pdf/dp09034.pdf. Accessed 19 April 2010.

  • Eurostat (2011). Energy statistics. Half-yearly electricity prices for industrial consumers (new methodology). Table: nrg_pc_205. http://epp.eurostat.ec.europa.eu. Accessed 30 September 2011.

  • EWI/Prognos [Energiewirtschaftliches Institut an der Universität zu Köln, Prognos AG] (Eds.) (2006). Auswirkungen höherer Ölpreise auf Energieangebot und -nachfrage. Ölpreisvariante der Energiewirtschaftlichen Referenzprognose 2030. http://www.bmwi.de/BMWi/Navigation/Service/publikationen,did=151104.html. Accessed 27 April 2010.

  • Fedrizzi, R. (Ed.) (2010). Solar Combi+. http://www.solarcombiplus.eu/docs/FinalPublishableReport_SolarCombiPlus.pdf. Accessed 30 September 2010.

  • FfE [Forschungsstelle für Energiewirtschaft] (Ed.) (2009). CO2-Verminderung in Deutschland. Teil I - Methodik und Zusammenfassung. http://www.ffe.de/download/langberichte/FfE_CO2-Endbericht_komplett.pdf. Accessed 25 April 2010.

  • Fleiter, T., Eichhammer, W., Hagemann, M., Wietschel, M., & Hirzel, S. (2009). Costs and potentials of energy savings in the European industry—a critical assessment of the concept of conservation supply curves. eceee summer study 2009, 1–8 June 2009, La Colle Sur Loup.

  • Fleiter, T., Schlomann, B., Arens, M., Hirzel, S., Rohde, C., Eichhammer, W., Cebulla, F., Idrissova, F., Reitze, F., Toro, F., Jochem, E., & Hassan, A. (2011). Where are the promising energy-efficient technologies? A comprehensive analysis of the German energy-intensive industries. eceee summer study 2011, 6–11 June 2011, Belambra Presqu’île de Giens.

  • Götze, U. (2006). Investitionsrechnung—Modelle und Analysen zur Beurteilung von Investitionsvorhaben. Berlin: Springer.

    Google Scholar 

  • Gruber, E., & Brand, M. (1991). Promoting energy conservation in small and medium-sized companies. Energy Policy, 19(3), 279–287.

    Article  Google Scholar 

  • Hammer, R. M. (1998). Unternehmensplanung. München/Wien: Oldenburg.

    Google Scholar 

  • Harris, J., Anderson, J., & Shafron, W. (2000). Investment in energy efficiency: a survey of Australian firms. Energy Policy, 28(12), 867–876.

    Article  Google Scholar 

  • Henderson, B. D. (1972). Die Erfahrungskurve—Geschichte. In B. von Oetinger (Ed.), Das Boston Consulting Group Strategie-Buch (pp. 554–556). München: Econ.

    Google Scholar 

  • Henderson, B. D. (1980). Noch einmal: Die Erfahrungskurve. In B. von Oetinger (Ed.), Das Boston Consulting Group Strategie-Buch (pp. 571–574). München: Econ.

    Google Scholar 

  • Henderson, B. D. (1984). Die Erfahrungskurve in der Unternehmensstrategie. Frankfurt am Main: Campus Verlag.

    Google Scholar 

  • Henning, H.-M. (2004). Solare Klimatisierung—Stand der Entwicklung in Wien, Österreich. http://www.ise.fraunhofer.de/veroeffentlichungen/nach-jahrgaengen/2004/solare-klimatisierung-stand-der-entwicklung-1. Accessed 24 March 2010.

  • Henning, H.-M. (Ed.). (2007). Solar-assisted air-conditioning of buildings. A handbook for planners. Wien: Springer.

    Google Scholar 

  • Henning, H.-M. (Ed.) (2010). PolySMART (Final Activity Report). http://www.polysmart.org/cms/upload/publications/PolySMART_Publishable_Final_Activity_Report.pdf. Accessed 15 October 2010.

  • Henning, H.-M., Urbaneck, T., Morgenstern, A., Nùnez, T., Wiemken, E., & Thümmler, E. (2009). Kühlen und Klimatisieren mit Wärme. Berlin: Solarpraxis AG.

    Google Scholar 

  • Hettinga, W. G., Junginger, M., Dekker, S. C., Hoogwijk, M., McAloon, A. J., & Hicks, K. B. (2009). Understanding the reductions in US corn ethanol production costs: an experience curve approach. Energy Policy, 37(1), 190–203.

    Article  Google Scholar 

  • IEA [International Energy Agency] (Ed.) (2010). World Energy Outlook 2010. Paris: OECD/IEA.

  • IEA HPP [International Energy Agency Heat Pump Programme Annex 34] (2010). Annex 34—thermally driven heat pumps for heating and cooling. http://www.annex34.org/. Accessed 10 June 2010.

  • IEA SHC [International Energy Agency Solar Heating and Cooling Programme] (2010). Task 38—Solar air-conditioning and refrigeration. http://www.iea-shc.org/task38/index.html. Accessed 10 June 2010.

  • IUTA [Institut für Energie- und Umwelttechnik] (Ed.) (2002). Preisatlas. Ableitung von Kostenfunktionen für Komponenten der rationellen Energienutzung, Duisburg-Rheinhausen.

  • Jakob, M., & Madlener, R. (2004). Riding down the experience curve for energy-efficient building envelopes: the Swiss case for 1970–2000. International Journal of Energy Technology and Policy, 2(1–2), 153–178.

    Article  Google Scholar 

  • Jamasb, T. (2007). Technical change theory and learning curves: patterns of progress in electricity generation technologies. The Energy Journal, 28(3), 51–71.

    Article  Google Scholar 

  • Jamasb, T., & Köhler, J. (2008). Learning curves for energy technology: a critical assessment in delivering a low carbon electricity system: technologies, economics and policy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jardot, D., Eichhammer, W., & Fleiter, T. (2010). Effects of economies of scale and experience on the costs of energy-efficient technologies—case study of electric motors. Energy Efficiency, 3(4), 331–346.

    Article  Google Scholar 

  • JRAIA [The Japan Refrigeration and Air Conditioning Industry Association] (Ed.) (2010). Shipments of air conditioning and refrigeration equipment in Japan—calender year. http://www.jraia.or.jp/english/excel/shipments_cy_e.xls. Accessed 04 May 2010.

  • Junginger, M. (2005). Learning in renewable energy technology development. Utrecht: Utrecht University.

    Google Scholar 

  • Junginger, M., Faaij, A., & Turkenberg, W. C. (2004). Cost reduction prospects for offshore wind farms. Wind Engineering, 28(1), 97–118.

    Article  Google Scholar 

  • Junginger, M., de Visser, E., de Visser, E., Hjort-Gregersen, K., Koornneef, J., Raven, R., Faaij, A., & Turkenberg, W. C. (2006). Technological learning in bio-energy systems. Energy Policy, 34(18), 4024–4041.

    Article  Google Scholar 

  • Junginger, M., Lako, P., van Sark, W., Weiss, M., & Lensink, S. (2008). Technological learning in the energy sector. Report NWS-E-2008-14. Utrecht: Utrecht University.

    Google Scholar 

  • Kahouli-Brahmi, S. (2008). Technological learning in energy–environment–economy modelling: a survey. Energy Policy, 36(1), 138–162.

    Article  Google Scholar 

  • Kamp, L. (2002). Learning in wind turbine development. A comparison between the Netherlands and Denmark. Utrecht: Utrecht University.

    Google Scholar 

  • Klaassen, G., Miketa, A., Larsen, K., & Sundquist, T. (2005). The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom. Ecological Economics, 54(2–3), 227–240.

    Article  Google Scholar 

  • Kloock, J., Sabel, H., & Schuhmann, W. (1987). Die Erfahrungskurve in der Unter-nehmenspolitik. Theoretische Präzisierung und praktische Perspektiven. In H. Albach (Ed.), Erfahrungskurve und Unternehmensstrategie (pp. 3–51). Wiesbaden: Gabler.

  • Kouvaritakis, N., Soria, A., & Isoard, S. (2000). Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching. International Journal of Global Energy Issues, 14(1–4), 104–115.

    Google Scholar 

  • Kreikebaum, H. (1993). Strategische Unternehmensplanung. Stuttgart/Berlin/Köln: Kohlhammer.

    Google Scholar 

  • Kruschwitz, L. (2007). Investitionsrechnung. München: Oldenburg Wissenschaftsverlag.

    Google Scholar 

  • Laitner, J. A., & Sanstad, A. H. (2004). Learning-by-doing on both the demand and the supply sides: implications for electric utility investments in a heuristic model. International Journal of Energy Technology and Policy, 2(1–2), 142–152.

    Article  Google Scholar 

  • Lambauer, J., Fahl, U., Ohl, M., Blesl, M., & Voß, A. (2008). Industrielle Großwärmepumpen - Potenziale, Hemmnisse und Best-Practice Beispiele (Forschungsbericht). Institut für Energiewirtschaft und Rationelle Energieanwendung (IER). http://www.ier.uni-stuttgart.de/publikationen/pb_pdf/Lambauer_IER_Forschungsbericht_Grosswaermepumpen.pdf. Accessed 20 April 2010.

  • Lange, B. (1984). Die Erfahrungskurve. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung, 1984(36), 229–245.

    Google Scholar 

  • Leis, C. (2008). Sorptionskältemaschinen - Nutzung der Abwärme im Glaswerk. https://www.zvei.org/fileadmin/user_upload/Schwerpunktinitiativen/Energieeffizienz/4-2_Impulsvortrag_Leis.pdf. Accessed 08 April 2010.

  • LfU [Bayerisches Landesamt für Umwelt] (Ed.) (2002). CO2-Minderung durch rationelle Energienutzung in der Maschinenbauindustrie. http://www.lfu.bayern.de/luft/fachinformationen/co2_minderung/doc/maschinenbau.pdf. Accessed 07 April 2010.

  • LfU [Bayerisches Landesamt für Umwelt] (Ed.) (2003). Effiziente Energienutzung in der Galvanikindustrie. http://www.lfu.bayern.de/luft/fachinformationen/co2_minderung/doc/leitfaden_galvanik.pdf. Accessed 08 April 2010.

  • LfU [Bayerisches Landesamt für Umwelt] (Ed.) (2006). Klima schützen - Kosten senken. Energieeinsparung in Lackierbetrieben. http://www.lfu.bayern.de/luft/fachinformationen/co2_minderung/doc/lackierung_langfassung.pdf. Accessed 08 April 2010.

  • Lundvall, B. A. (1988). Innovation as an interactive process: from user-producer interaction to the national system of innovation. In G. Dosi, C. Freeman, R. Nelson, & L. Soete (Eds.), Technical change and economic theory (pp. 349–369). London: Pinter.

    Google Scholar 

  • Martinus, G. H., Blesl, M., Smekens, K. E. L., Lako, P., & Ohl, M. (2005). Technical and economic characterization of selected energy technologies. Contributions to the EU SAPIENTIA project. Petten: ECN—Energy Research Center of the Netherlands.

    Google Scholar 

  • McDonald, A., & Schrattenholzer, L. (2001). Learning rates for energy technologies. Energy Policy, 29(4), 255–261.

    Article  Google Scholar 

  • Meyer-Krahmer, F., & Dreher, C. (2004). Neuere Betrachtungen zu Technikzyklen und Implikationen für die Fraunhofer-Gesellschaft. In D. Spath (Ed.), Forschungs- und Technologiemanagement: Potenziale nutzen - Zukunft gestalten (pp. 27–35). München: Hanser.

    Google Scholar 

  • Miketa, A., & Schrattenholzer, L. (2004). Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results. Energy Policy, 32(15), 1679–1692.

    Article  Google Scholar 

  • Montgomery, D. B., & Day, G. S. (1985). Experience Curves: Evidence, Empirical Issues, and Applications. In H. Thomas & D. Gardmer (Eds.), Strategic Marketing and Management (pp. 213–238). New York: John Wiley & Sons.

    Google Scholar 

  • Neij, L. (1997). Use of experience curves to analyze the prospects for diffusion and adoption of renewable energy technology. Energy Policy, 25(13), 1099–1107.

    Article  Google Scholar 

  • Nemet, G. F. (2009). Interim monitoring of cost dynamics for publicly supported energy technologies. Energy Policy, 37(3), 825–835.

    Article  Google Scholar 

  • Newell, R. G. (2000). Incorporation of technological learning into NEMS buildings modules. Washington D.C.

  • Pehnt, M., Bödeker, J., Arens, M., Jochem, E., & Idrissova, F. (2010). Die Nutzung industrieller Abwärme—technisch-wirtschaftliche Potenziale und energiepolitische Umsetzung. Heidelberg/Karlsruhe: ifeu, Fraunhofer ISI, IREES GmbH.

  • Perridon, L., & Steiner, M. (2007). Finanzwirtschaft der Unternehmung. München: Verlag Franz Vahlen.

    Google Scholar 

  • Preisler, A. (Ed.) (2008). Reduction of Costs of Solar Cooling Systems. Final Report - Publishable Part (ROCOCO, Project No. TREN/05/FP6EN/SO7.54855/020094). http://www.arsenal.ac.at/downloads/ROCOCO_final%20report-publishable%20part.pdf. Accessed 20 April 2010.

  • Ramírez, C. A., & Worrell, E. (2006). Feeding fossil fuels to the soil—an analysis of energy embedded and technological learning in the fertilizer industry. Resources, Conservation and Recycling, 46(1), 75–93.

    Article  Google Scholar 

  • Rohdin, P., & Thollander, P. (2006). Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden. Energy, 31(12), 1836–1844.

    Article  Google Scholar 

  • Rosenberg, N. (1982). Inside the black box: technology and economics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sallenave, J. P. (1985). The uses and abuses of experience curves. Long Range Planning, 18(1), 64–72.

    Article  Google Scholar 

  • Schlomann, B., Rohde, C., & Eichhammer, W. (2010). Erstellung von Anwendungsbilanzen für das Verarbeitende Gewerbe. Pilotstudie für die Arbeitsgemeinschaft Energiebilanzen e.V. (AGEB) – Entwurf. http://www.ag-energiebilanzen.de/viewpage.php?idpage=255. Accessed 30 September 2011.

  • Schoots, K., Ferioli, F., Kramer, G. J., & van der Zwaan, B. C. C. (2008). Learning curves for hydrogen production technology: an assessment of observed cost reductions. International Journal of Hydrogen Energy, 33(11), 2630–2645.

    Article  Google Scholar 

  • Simader, G. R., & Rakos, C. (2005). Klimatisierung, Kühlung und Klimaschutz: Technologien, Wirtschaftlichkeit und CO2-Reduktionspotenziale. Österreichische Energieagentur. http://www.energyagency.at/fileadmin/aea/pdf/publikationen/broschueren/2004-2006/materialband-klimatisierung-2005.pdf. Accessed 19 March 2010.

  • Söderholm, P., & Klaassen, G. (2007). Wind power in Europe: a simultaneous innovation-diffusion model. Environmental and Resource Economics, 36(2), 163–190.

    Article  Google Scholar 

  • Sollesnes, G., & Helgrud, H. E. (2009). Potensialstudie for utnyttelse av spillvarme fra norsk industri. Enova.

  • Sorrell, S., O’Malley, E., Schleich, J., & Scott, S. (2004). The economics of energy efficiency: barriers to cost-effective investment. Cheltenham: Elgar.

    Google Scholar 

  • VDI [Verein Deutscher Ingenieure] (Ed.) (2007). Richtlinie 2067 (Blatt 1). Wirtschaftlichkeit gebäudetechnischer Anlagen. Grundlagen und Kostenberechnung (ICS 91.140.01). Beuth Verlag.

  • VDMA [Verband Deutscher Maschinen- und Anlagenbau] (2011). Energiebedarf für Kältetechnik in Deutschland. Eine Abschätzung des Energiebedarfs von Kältetechnik in Deutschland nach Einsatzgebieten. Frankfurt am Main: VDMA.

  • Vougiouklakis, Y., Theofilidi, M., & Korma, E. (Eds.) (2008). Report on market situation & trends about small scale chillers. http://www.solarcombiplus.eu/docs/D2_1_CRES_final_updated122008.pdf. Accessed 04 October 2011.

  • Wacker, P. (1980). Die Erfahrungskurve in der Unternehmensplanung. Analyse und empirische Überprüfung. München: Florentz.

    Google Scholar 

  • Weiss, M. (2009). Learning in carbon accounting and energy efficiency. Utrecht: Utrecht University.

    Google Scholar 

  • Weiss, M., Junginger, M., & Patel, M. K. (2008). Learning energy efficiency - experience curves for household appliances and space heating, cooling, and lighting technologies. Report NWS-E-2008-26. Utrecht: Utrecht University.

    Google Scholar 

  • Weiss, M., Junginger, M., Patel, M. K., Blok, K., & Dittmar, L. (2009). Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands. Energy Policy, 37(8), 2962–2976.

    Article  Google Scholar 

  • Weiss, M., Junginger, M., Patel, M. K., & Blok, K. (2010a). Analyzing price and efficiency dynamics of large appliances with the experience curve approach. Energy Policy, 38(2), 770–783.

    Article  Google Scholar 

  • Weiss, M., Junginger, M., Patel, M. K., & Blok, K. (2010b). A review of experience curve analyses for energy demand technologies. Technological Forecasting and Social Change, 77(3), 411–428.

    Article  Google Scholar 

  • Wene, C. O. (2000). Experience Curves for Energy Technology Policy. Paris: OECD/IEA. http://www.iea.org/textbase/nppdf/free/2000/curve2000.pdf. Accessed 15 May 2010.

  • Wiemken, E. (Ed.) (2009). Anforderungen an Auslegung und Konfiguration kleiner und mittlerer Anlagen zur solaren Klimatisierung: Leitfaden. SOLAIR Project. http://www.solair-project.eu/uploads/media/SOLAIR_Guidelines_DE.pdf. Accessed 24 March 2010.

  • Wietschel, M., Arens, M., Dötsch, C., Herkel, S., Krewitt, W., Markewitz, P., Möst, D., & Scheufen, M. (Eds.). (2010). Energietechnologien 2050—Schwerpunkte für Forschung und Entwicklung. Technologienbericht. Stuttgart: Fraunhofer Verlag.

    Google Scholar 

  • WKO [Wirtschaftskammer Oberösterreich] (2003). Energiekennzahlen und Einsparpotentiale in der Metallverarbeitung. http://wko.at/ooe/energie/Branchen/metall/metall-ges.htm. Accessed 08 April 2010.

  • Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of Aeronautical Sciences, 1936(3), 122–128.

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the German Federal Ministry of Economics and Technology under grant no. 0327484C as part of the integrated project EnEffAH. We gratefully acknowledge the support of Andreas Weiß and Frank Lorenz of the University of Applied Sciences Amberg-Weiden for elaborating the technical foundations for this paper and thank Wolfgang Eichhammer of Fraunhofer ISI and two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Schall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schall, D., Hirzel, S. Thermal cooling using low-temperature waste heat: a cost-effective way for industrial companies to improve energy efficiency?. Energy Efficiency 5, 547–569 (2012). https://doi.org/10.1007/s12053-012-9151-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-012-9151-0

Keywords

Navigation