Skip to main content

Advertisement

Log in

Energy intensities and greenhouse gas emission mitigation in global agriculture

  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Energy efficiency and greenhouse gas emissions are closely linked. This paper reviews agricultural options to reduce energy intensities and their impacts, discusses important accounting issues related to system boundaries, land scarcity, and measurement units and compares agricultural energy intensities and improvement potentials on an international level. Agricultural development in recent decades, while increasing yields, has led to lower average energy efficiencies when comparing the 1960s and the mid 1980s. In the two decades thereafter, energy intensities in developed countries increased, but with little impact on greenhouse gas emissions. Efficiency differences across countries in the year 2000 suggest a maximum improvement potential of 500 million tons of CO2 annually. If only below average countries would increase their energy efficiency to average levels of the year 2000, the resulting emission reductions would be below 200 million tons of CO2 annually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. An additional search within the 912 title for at least one match of the topics “CO2-balance”, “carbon balance”, “greenhouse gas”, “carbon emission”, or “emission mitigation” returned only seven matches.

  2. Fruits and vegetables for distant markets are usually harvested earlier and more pesticides have to be used to avoid spoilage.

  3. While our discussion here focuses on aggregate values for eight major regions, country-specific results are available from the authors.

References

  • Ackerman, D., & Tellis, G. (2001). Can culture affect prices? A cross-cultural study of shopping and retail prices. Journal of Retailing, 77(1), 57–82. doi:10.1016/S0022-4359(00)00046-4.

    Article  Google Scholar 

  • Alcantara, V., & Roca, J. (1995). Energy and Co2 Emissions in Spain—methodology of analysis and some results for 1980–90. Energy Economics, 17(3), 221–230. doi:10.1016/0140-9883(95)00014-L.

    Article  Google Scholar 

  • Amon, B., Amon, T., Alt, C., Moitzi, G., & Boxberger, J. (2001). Nitrous oxide emissions from cattle production systems and mitigation options. Phyton-Annales Rei Botanicae, 41(3), 17–28.

    CAS  Google Scholar 

  • Antle, J. M., Capalbo, S. M., Elliott, E. T., & Paustian, K. H. (2004). Adaptation, spatial heterogeneity, and the vulnerability of agricultural systems to climate change and CO2 fertilization: an integrated assessment approach. Climatic Change, 64(3), 289–315. doi:10.1023/B:CLIM.0000025748.49738.93.

    Article  CAS  Google Scholar 

  • Beadle, C. L., & Long, S. P. (1985). Photosynthesis—is it limiting to biomass production. Biomass, 8(2), 119–168. doi:10.1016/0144-4565(85)90022-8.

    Article  CAS  Google Scholar 

  • Bruhn, C. M. (2007). Enhancing consumer acceptance of new processing technologies. Innovative Food Science & Emerging Technologies, 8(4), 555–558. doi:10.1016/j.ifset.2007.04.006.

    Article  Google Scholar 

  • Bugbee, B. G., & Salisbury, F. B. (1988). Exploring the limits of crop productivity : I. photosynthetic efficiency of wheat in high irradiance environments. Plant Physiology, 88(3), 869–878.

    Article  CAS  Google Scholar 

  • Capelle, A., & Tittonel, E. D. (1999). Crambe, a potential non food oil crop. I Production. Agro Food Industry Hi-Tech, 10(1), 22–27.

    Google Scholar 

  • Chen, D. W. (2001). Environmental challenges of animal agriculture and the role and task of animal nutrition in environmental protection—review. Asian-Australasian Journal of Animal Sciences, 14(3), 423–431.

    CAS  Google Scholar 

  • Cowie, A., Schneider, U. A., & Montanarella, L. (2007). Potential synergies between existing multilateral environmental agreements in the implementation of land use, land-use change and forestry activities. Environmental Science & Policy, 10(4), 335–352. doi:10.1016/j.envsci.2007.03.002.

    Article  Google Scholar 

  • Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2008). N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 8(2), 389–395.

    Article  CAS  Google Scholar 

  • De Cara, S., & Jayet, P. A. (2000). Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France. European Review of Agriculture Economics, 27(3), 281–303. doi:10.1093/erae/27.3.281.

    Article  Google Scholar 

  • Deike, S., Pallutt, B., & Christen, O. (2008). Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. European Journal of Agronomy, 28(3), 461–470. doi:10.1016/j.eja.2007.11.009.

    Article  Google Scholar 

  • Department for Transport. (2008). Carbon and sustainability reporting within the renewable transport fuel obligation. requirements and guidance. Government Recommendation to the Office of the Renewable Fuels Agency, Department for Transport, UK Government. Retrieved October 5th, 2008 from http://www.dft.gov.uk/pgr/roads/environment/rtfo/govrecrfa.pdf.

  • Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., et al. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74(1), 37–66. doi:10.1016/S0378-4290(01)00197-6.

    Article  Google Scholar 

  • Edwards, B. K., Howitt, R. E., & Flaim, S. J. (1996). Fuel, crop, and water substitution in irrigated agriculture. Resource and Energy Economics, 18(3), 311–331. doi:10.1016/S0928-7655(96)00011-5.

    Article  Google Scholar 

  • Ellert, B. H., & Janzen, H. H. (2008). Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer. Canadian Journal of Soil Science, 88(2), 207–217.

    CAS  Google Scholar 

  • EIA (2008). Annual Energy Review 2007. Energy Information Administration. DOE/EIA-0384. http://www.eia.doe.gov/aer.

  • Eshel, G., & Martin, P. A. (2006). Diet, energy, and global warming. Earth Interactions, 10, 1–17.

    Article  Google Scholar 

  • Food and Agricultural Organization (2008). Nutritive factors. The statistics division. Available online: http://www.fao.org/es/ess/xxx.asp.

  • Getz, D., & Brown, G. (2006). Critical success factors for wine tourism regions: a demand analysis. Tourism Management, 27(1), 146–158. doi:10.1016/j.tourman.2004.08.002.

    Article  Google Scholar 

  • Glancey, J. L., & Kee, E. (2003). Technical and strategic advances in mechanization. HortScience, 38(5).

  • Gundogmus, E. (2006). Energy use on organic farming: a comparative analysis on organic versus conventional apricot production on small holdings in Turkey. Energy Conversion and Management, 47(18–19), 3351–3359. doi:10.1016/j.enconman.2006.01.001.

    Article  Google Scholar 

  • Heyland, K. U., & Solansky, S. (1979). Energieeinsatz und Energieumsetzung im Bereich der Pflanzenproduktion. Agrarwirtschaft und Energie, Berichte über die Landwirtschaft (Sonderheft 195), 15–30.

  • Hoeppner, J. W., Entz, M. H., McConkey, B. G., Zentner, R. P., & Nagy, C. N. (2006). Energy use and efficiency in two Canadian organic and conventional crop production systems. Renewable Agriculture and Food Systems, 21(1), 60–67. doi:10.1079/RAF2005118.

    Article  Google Scholar 

  • Hughes, T.-P. (1987). The evolution of large technological systems. In W.-E. Bijker, & T.-P. Hughes (Eds.), The social construction of technological systems (pp. 51–83). Cambridge, Massachusetts: M.I.T. Press (Reissued 1990).

    Google Scholar 

  • Kaltsas, A. M., Mamolos, A. P., Tsatsarelis, C. A., Nanos, G. D., & Kalburtji, K. L. (2007). Energy budget in organic and conventional olive groves. Agriculture Ecosystems & Environment, 122(2), 243–251. doi:10.1016/j.agee.2007.01.017.

    Article  Google Scholar 

  • Kaushik, N., Kumar, K., & Kumar, S. (2007). Potential of Jatropha curcas for biofuels. Journal of Biobased Materials and Bioenergy, 1(3), 301–314. doi:10.1166/jbmb.2007.002.

    Article  Google Scholar 

  • Koch, G. (2007). The genetic basis of yield potential and breeding in sugarbeet. Zuckerindustrie, 132(1), 43–49.

    CAS  Google Scholar 

  • Landøkonomisk Oversigt. (1999). Udgivet af De Danske Landboforeninger. (Agricultural-economic summary 1999, issued by the Danish Farmer's Union). Available online: www.ddl.dk

  • Lee, H. C., McCarl, B., Schneider, U., & Chen, C. C. (2007). Leakage and comparative advantage implications of agricultural participation in greenhouse gas emission mitigation. Mitigation and Adaptation Strategies for Global Change, 12(4), 471–494. doi:10.1007/s11027-006-2941-y.

    Article  Google Scholar 

  • Lieffering, M., Newton, P., & Thiele, J. H. (2008). Greenhouse gas and energy balance of dairy farms using unutilised pasture co-digested with effluent for biogas production. Australian Journal of Experimental Agriculture, 48, 104–108. doi:10.1071/EA07252.

    Article  CAS  Google Scholar 

  • Liu, X. J. J., Mosier, A. R., Halvorson, A. D., Reule, C. A., & Zhang, F. S. (2007). Dinitrogen and N2O emissions in arable soils: effect of tillage, N source and soil moisture. Soil Biology & Biochemistry, 39(9), 2362–2370. doi:10.1016/j.soilbio.2007.04.008.

    Article  CAS  Google Scholar 

  • Mendoza, T. C. (2005). An energy-based analysis of organic, low external input sustainable agriculture (LEISA) and conventional rice production in the Philippines. Philippine Agricultural Scientist, 88(3), 257–267.

    Google Scholar 

  • Monteny, G. J., Bannink, A., & Chadwick, D. (2006). Greenhouse gas abatement strategies for animal husbandry. Agriculture Ecosystems & Environment, 112(2–3), 163–170. doi:10.1016/j.agee.2005.08.015.

    Article  CAS  Google Scholar 

  • Nkakini, S. O., Ayotamuno, M. J., Ogaji, S. O. T., & Probert, S. D. (2006). Farm mechanization leading to more effective energy-utilizations for cassava and yam cultivations in Rivers State, Nigeria. Applied Energy, 83(12), 1317–1325. doi:10.1016/j.apenergy.2006.03.001.

    Article  Google Scholar 

  • Olk, D. C., Cassman, K. G., Simbahan, G., Cruz, P. C. S., Abdulrachman, S., Nagarajan, R., et al. (1999). Interpreting fertilizer-use efficiency in relation to soil nutrient-supplying capacity, factor productivity, and agronomic efficiency. Nutrient Cycling in Agroecosystems, 53(1), 35–41. doi:10.1023/A:1009728622410.

    Article  Google Scholar 

  • Podolny, J. M., & Stuart, T. E. (1995). A role-based ecology of technological-change. American Journal of Sociology, 100(5), 1224–1260. doi:10.1086/230637.

    Article  Google Scholar 

  • Raitzer, D. A., & Kelley, T. G. (2008). Benefit-cost meta-analysis of investment in the International Agricultural Research Centers of the CGIAR. Agricultural Systems, 96(1–3), 108–123. doi:10.1016/j.agsy.2007.06.004.

    Article  Google Scholar 

  • Ramsden, S., Gibbons, J., & Wilson, P. (1999). Impacts of changing relative prices on farm level dairy production in the UK. Agricultural Systems, 62(3), 201–215. doi:10.1016/S0308-521X(99)00065-7.

    Article  Google Scholar 

  • Rathke, G. W., Wienhold, B. J., Wilheim, W. W., & Diepenbrock, W. (2007). Tillage and rotation effect on corn-soybean energy balances in eastern Nebraska. Soil & Tillage Research, 97, 60–70. doi:10.1016/j.still.2007.08.008.

    Article  Google Scholar 

  • Robert, P. C. (2002). Precision agriculture: a challenge for crop nutrition management. Plant and Soil, 247(1), 143–149. doi:10.1023/A:1021171514148.

    Article  CAS  Google Scholar 

  • Roos, A. (1998). Nontechnical barriers and driving forces to bioenergy market growth in USA, Austria and Sweden—the role of policy and market structure. Biomass for Energy and Industry, 1154–1157.

  • Sabri, H. M., Wilson, H. R., Wilcox, C. J., & Harms, R. H. (1991). Comparison of energy-utilization efficiency among 6 lines of White Leghorns. Poultry Science, 70(2), 229–233.

    CAS  Google Scholar 

  • Sakellariou-Makrantonaki, M., Papalexis, D., Nakos, N., & Kalavrouziotis, I. K. (2007). Effect of modern irrigation methods on growth and energy production of sweet sorghum (var. Keller) on a dry year in Central Greece. Agricultural Water Management, 90(3), 181–189. doi:10.1016/j.agwat.2007.03.004.

    Article  Google Scholar 

  • Schneider, U. A., & Kumar, P. (2008). Greenhouse gas mitigation through agriculture. Choices (New York, N.Y.), 23(1), 19–23.

    Google Scholar 

  • Schneider, U. A., & McCarl, B. A. (2003). Economic potential of biomass based fuels for greenhouse gas emission mitigation. Environmental and Resource Economics, 24(4), 291–312. doi:10.1023/A:1023632309097.

    Article  Google Scholar 

  • Schneider, U. A., & McCarl, B. A. (2006). Appraising agricultural greenhouse gas mitigation potentials: effects of alternative assumptions. Agricultural Economics, 35(3), 277–287. doi:10.1111/j.1574-0862.2006.00162.x.

    Article  Google Scholar 

  • Schneider, U. A., Havlik, P., Schmid, E., Huck, I., Obersteiner, M., Sauer, T., et al. (2008). Global interdependencies between population, water, food, and environmental policies. Environmental Science & Policy (Special Issuse GEC and Food Systems).

  • Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F. X., Elobeid, A., Fabiosa, J., et al. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240. doi:10.1126/science.1151861.

    Article  CAS  Google Scholar 

  • Siegel, O. (1979). Energieeinsparung in der Pflanzenproduktion im Bereich Pflanzenernährung. Agrarwirtschaft und Energie, Berichte über die Landwirtschaft (Sonderheft 195), 135–141.

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2007a). Agriculture. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Smith, P., Martino, D., Cai, Z. C., Gwary, D., Janzen, H., Kumar, P., et al. (2007b). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture Ecosystems & Environment, 118(1–4), 6–28. doi:10.1016/j.agee.2006.06.006.

    Article  Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B-Biological Sciences, 363, 789–813. doi:10.1098/rstb.2007.2184.

    Article  CAS  Google Scholar 

  • Traxler, G., & Byerlee, D. (2001). Linking technical change to research effort: an examination of aggregation and spillovers effects. Agricultural Economics, 24(3), 235–246. doi:10.1111/j.1574-0862.2001.tb00027.x.

    Article  Google Scholar 

  • Tzilivakis, J., Warner, D. J., May, M., Lewis, K. A., & Jaggard, K. (2005). An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85(2), 101–119. doi:10.1016/j.agsy.2004.07.015.

    Article  Google Scholar 

  • van Beilen, J. B., & Poirier, Y. (2007). Establishment of new crops for the production of natural rubber. Trends in Biotechnology, 25(11), 522–529.

    Article  CAS  Google Scholar 

  • van der Meer, H. G. (2008). Optimising manure management for GHG outcomes. Australian Journal of Experimental Agriculture, 48(1–2), 38–45. doi:10.1071/EA07214.

    Article  Google Scholar 

  • Yu, L., Li, D., Yu, S., Zou, J., Tao, M., & Wu, Z. (2006). Research advances in slow/controlled release fertilizers. Shengtaixue Zazhi, 25(12), 1559–1563.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe A. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, U.A., Smith, P. Energy intensities and greenhouse gas emission mitigation in global agriculture. Energy Efficiency 2, 195–206 (2009). https://doi.org/10.1007/s12053-008-9035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-008-9035-5

Keywords

Navigation