Skip to main content
Log in

Hot machining of Ti–6Al–4V: FE analysis and experimental validation

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Machining process is a nonlinear process where high stress, temperature and strain are generated in the primary and secondary shear zone. It is difficult to determine these parameters experimentally and also consumes time. In this study, finite-element method (FEM) is applied to hot machining of Ti–6Al–4V alloy using DEFORM software. The simulations are used to investigate the effect of heating temperature on cutting force, cutting temperature, stress, strain and chip morphology for various machining conditions. The predicted results are compared to results obtained in room temperature and hot machining conditions. From this analysis, it is observed that hot machining reduces the cutting force, and changes the chip morphology. To validate the simulation results, an experimental trial is performed and positive coherence is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Upadhyay V, Jain P K and Mehta N K 2012 Machinability studies in hot machining of Ti–6Al–4V alloy. Adv. Mater. Res. 622–623: 361–365, https://doi.org/10.4028/www.scientific.net/amr.622-623.361

    Article  Google Scholar 

  2. Rahman Rashid R A, Bermingham M J, Sun S, Wang G and Dargusch M S 2013 The response of the high strength Ti–10V–2Fe-3Al beta titanium alloy to laser assisted cutting. Precis. Eng. 37: 461–472, https://doi.org/10.1016/j.precisioneng.2012.12.002.

    Article  Google Scholar 

  3. Sun S, Brandt M, Barnes J E and Dargusch M S 2011 Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti–6Al–4V alloy. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 225: 1512–1527, https://doi.org/10.1177/0954405411411608

    Article  Google Scholar 

  4. Ginta T L and Amin A K M N 2013 Thermally-assisted end milling of titanium alloy Ti–6Al–4V using induction heating. Int. J. Mach. Mach. Mater.14: 194–212, https://doi.org/10.1504/ijmmm.2013.055737

    Article  Google Scholar 

  5. Fnides B, Yallese M A, Mabrouki T and Rigal J F 2011 Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel. Sadhana – Acad. Proc. Eng. Sci. 36: 109–123, https://doi.org/10.1007/s12046-011-0007-7

    Article  Google Scholar 

  6. Akasawa T, Takeshita H and Uehara K 1987 Hot machining with cooled cutting tools. CIRP Ann. – Manuf. Technol. 36: 37–40, https://doi.org/10.1016/s0007-8506(07)62548-7

    Article  Google Scholar 

  7. Leshock C E, Kim J N and Shin Y C 2001 Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int. J. Mach. Tools Manuf. 41: 877–897, https://doi.org/10.1016/s0890-6955(00)00106-1

    Article  Google Scholar 

  8. Tosun N and Ozler L 2004 Optimisation for hot turning operations with multiple performance characteristics. Int. J. Adv. Manuf. Technol. 23: 777–782, https://doi.org/10.1007/s00170-003-1672-4

    Article  Google Scholar 

  9. Maity K P and Swain P K 2008 An experimental investigation of hot-machining to predict tool life. J. Mater. Process. Technol. 198: 344–349, https://doi.org/10.1016/j.jmatprotec.2007.07.018

    Article  Google Scholar 

  10. Baili M, Wagner V, Dessein G, Sallaberry J and Lallement D 2011 An experimental investigation of hot machining with induction to improve Ti-5553 machinability. Appl. Mech. Mater. 62: 67–76, https://doi.org/10.4028/www.scientific.net/amm.62.67

    Article  Google Scholar 

  11. Liu X, Xu W J, Sun J and Zhang L 2012 Research on heating resistance in electric hot machining. Adv. Mater. Res. 430–432: 209–212, https://doi.org/10.4028/www.scientific.net/amr.430-432.209

    Article  Google Scholar 

  12. Muhammad R, Ahmed N, Shariff Y M and Silberschmidt V V 2012 Finite element analysis of forces in drilling of Ti-alloys at elevated temperature. Solid State Phenom. 188: 250–255, https://doi.org/10.4028/www.scientific.net/ssp.188.250

    Article  Google Scholar 

  13. Muhammad R, Maurotto A, Roy A and Silberschmidt V V 2012 Hot ultrasonically assisted turning of β -Ti alloy. Procedia CIRP 1: 336–341, https://doi.org/10.1016/j.procir.2012.04.060

    Article  Google Scholar 

  14. Xiang H, Fu J and Chen Z 2006 3D Finite element modeling of laser machining PMMA. In: Proceedings of the IEEE Conference, vol. 1, pp. 942–946

    Google Scholar 

  15. Singh G, Teli M, Samanta A and Singh R 2013 Finite element modeling of laser-assisted machining of AISI D2 tool steel. Mater. Manuf. Process. 28: 443–448, https://doi.org/10.1080/10426914.2012.700160

    Article  Google Scholar 

  16. Zamani H, Hermani J P, Sonderegger B and Sommitsch C 2013 3D simulation and process optimization of laser assisted milling of Ti6Al4V. Procedia CIRP 8: 75–80, https://doi.org/10.1016/j.procir.2013.06.068.

    Article  Google Scholar 

  17. Shi B, Attia H, Vargas R and Tavakoli S 2008 Numerical and experimental investigation of laser-assisted machining of Inconel 718. Mach. Sci. Technol. 12: 498–513, https://doi.org/10.1080/10910340802523314

    Article  Google Scholar 

  18. Parida A K and Maity K 2018 Analysis of some critical aspects in hot machining of Ti-5553 superalloy: experimental and FE analysis. Def. Technol., https://doi.org/10.1016/j.dt.2018.10.005

    Book  Google Scholar 

  19. DEFORM 3D Version 11.0 2016 User manual. SFTC, Columbus, Ohio State

  20. Joshi S, Tewari A and Joshi S 2014 Influence of preheating on chip segmentation and microstructure in orthogonal machining of Ti6Al4V. J. Manuf. Sci. Eng. 135: 1–11, https://doi.org/10.1115/1.4025741

    Article  Google Scholar 

  21. Umbrello D 2008 Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J. Mater. Process. Technol. 196: 79–87, https://doi.org/10.1016/j.jmatprotec.2007.05.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ASIT KUMAR PARIDA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PARIDA, A.K., MAITY, K. Hot machining of Ti–6Al–4V: FE analysis and experimental validation. Sādhanā 44, 142 (2019). https://doi.org/10.1007/s12046-019-1127-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-019-1127-8

Keywords

Navigation