Skip to main content
Log in

Statistical inference for single-index-driven varying-coefficient time series model with explanatory variables

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Varying-coefficient time series model has gained wide attention because of its flexibility and interpretability. This article considers the single-index-driven varying-coefficient time series model with explanatory variables. It can be seen as a generalization of the autoregressive model with explanatory variables by changing the coefficient of autoregressive part to a single-index structure, or a generalization of the classical linear model by putting a single-index-driven varying-coefficient autoregressive structure into the model. We adopt local linear smoothing and least square methods separately based on an iterative algorithm to estimate unknown link function and parameters. The estimator for the nonparametric part is proved to be asymptotically normal at any fixed point, and the estimators for the parametric part are derived to be asymptotically normal as well. Some simulation studies are carried out to illustrate the model and finite sample performances of the estimators, and a real data example is also conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson T W and Rubin H, The asymptotic properties of estimates of the parameters of a single equation in a complete system of stochastic equations, Ann. Math. Stat. 21 (1950) 570–582

    Article  MathSciNet  Google Scholar 

  2. Bollerslev T, Generalized autoregressive conditional heteroskedasticity, J. Econometrics 31 (1986) 307–327

    Article  MathSciNet  Google Scholar 

  3. Box G E P and Jenkins G M, Time Series Analysis, Forecasting, and Control (1970) (San Francisco: Holden-Day)

    MATH  Google Scholar 

  4. Cai Z and Fan J, Average regression surface for dependent data, J. Multivariate Anal. 75 (2000) 112–142

    Article  MathSciNet  Google Scholar 

  5. Cai Z, Fan J and Yao Q, Functional-coefficient regression models for nonlinear time series, J. Amer. Statist. Assoc. 95 (2000) 941–956

    Article  MathSciNet  Google Scholar 

  6. Carroll R J, Fan J, Gijbels I and Wand M P, Generalized partially linear single-index models, J. Amer. Statist. Assoc. 92 (1997) 477–489

    Article  MathSciNet  Google Scholar 

  7. Chen R and Tsay R S, Functional-coefficient autoregressive models, J. Amer. Statist. Assoc. 88 (1993a) 298–308

    MathSciNet  MATH  Google Scholar 

  8. Chen R and Tsay R S, Nonlinear Additive ARX Models, J. Amer. Statist. Assoc. 88 (1993b) 955–967

    Article  Google Scholar 

  9. Doukhan P, Massart P and Rio E, The functional central limit theorem for strongly mixing processes, Ann. Inst. H. Poincare Probab. Statist. 30 (1994) 63–82

    MathSciNet  MATH  Google Scholar 

  10. Engle R F, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50 (1982) 987–1007

    Article  MathSciNet  Google Scholar 

  11. Fan J and Gijbels I, Local Polynomial Modelling and its Applications (1996) (London: Chapman and Hall)

    MATH  Google Scholar 

  12. Fan J and Yao Q, Nonlinear Time Series: Nonparametric and Parametric Methods (2003) (New York: Springer)

    Book  Google Scholar 

  13. Feng S and Xue L, Model detection and estimation for single-index varying coefficient model, J. Multivariate Anal. 139 (2015) 227–244

    Article  MathSciNet  Google Scholar 

  14. Granger C W J and Andersen A P, An Introduction to Bilinear Time Series Models (1978) (Göttingen: Vandenhoeck & Ruprecht)

    MATH  Google Scholar 

  15. Haggan V and Ozaki T, Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model, Biometrika 68 (1981) 189–196

    Article  MathSciNet  Google Scholar 

  16. Harvill J L and Ray B K, Functional coefficient autoregressive models for vector time series, Comput. Statist. Data Anal. 50 (2006) 3547–3566

    Article  MathSciNet  Google Scholar 

  17. Ichimura H, Semiparametric least squares (SLS) and weighted SLS estimation of single-index models, J. Econometrics 58 (1993) 71–120

    Article  MathSciNet  Google Scholar 

  18. Jiang J, Multivariate functional-coefficient regression models for nonlinear vector time series data, Biometrika 101 (2014) 689–702

    Article  MathSciNet  Google Scholar 

  19. Koopmans T C, Statistical Inference in Dynamic Economic Models (Ed.) (1950) (New York: Wiley)

  20. Lin H, Zhang R, Shi J, Liu J and Liu Y, A new local estimation method for single index models for longitudinal data, J. Nonparametr. Stat. 28 (2016) 644–658

    Article  MathSciNet  Google Scholar 

  21. Masry E and Tjøstheim D, Nonparametric estimation and identification of nonlinear ARCH time series: Strong convergence and asymptotic normality, Econometric Theory 11 (1995) 258–289

    Article  MathSciNet  Google Scholar 

  22. Nicholls D F and Quinn B G, Random Coefficient Autoregressive Models: An Introduction, Lecture Notes in Statistics, 11 (1982) (New York: Springer)

    Book  Google Scholar 

  23. Tong H, Discussion of a paper by A. J. Lawrance and N. T. Kottegoda, J. Roy. Statist. Soc. Ser. A 140 (1977) 34–35

    Article  Google Scholar 

  24. Tong H and Lim K S, Threshold autoregression, limit cycles and cyclical data, J. R. Stat. Soc. Ser. B Stat. Methodol. 42 (1980) 245–292

    MATH  Google Scholar 

  25. Wong H, Ip W and Zhang R, Varying-coefficient single-index model, Comput. Statist. Data Anal. 52 (2008) 1458–1476

    Article  MathSciNet  Google Scholar 

  26. Xia Y and Li W K, On the estimation and testing of functional-coefficient linear models, Statist. Sinica 9 (1999a) 735–757

    MathSciNet  MATH  Google Scholar 

  27. Xia Y and Li W K, On single-index coefficient regression models, J. Amer. Statist. Assoc. 94 (1999b) 1275–1285

    Article  MathSciNet  Google Scholar 

  28. Xia Y, Tong H and Li W K, On extended partially linear single-index models, Biometrika 86 (1999) 831–842

    Article  MathSciNet  Google Scholar 

  29. Xue L and Pang Z, Statistical inference for a single-index varying-coefficient model, Stat. Comput. 23 (2013) 589–599

    Article  MathSciNet  Google Scholar 

  30. Yule G U, On a method of investigating periodicities in disturbed series with special reference to Wolfer’s sunspot numbers, Philos. Trans. Roy. Soc. London Ser. A 226 (1927) 267–298

    Article  Google Scholar 

  31. Zhang S, Guo B, Dong A, He J, Xu Z and Chen S X, Cautionary tales on air-quality improvement in Beijing, Proc. R. Soc. A 473 (2017) 20170457

    Article  Google Scholar 

  32. Zhao Y, Xue L and Feng S, Estimation for a partially linear single-index varying-coefficient model, Comm. Statist. Simulation Comput. (2019 Online), https://doi.org/10.1080/03610918.2019.1680691

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos 11871028, 11731015, 11901053) and Natural Science Foundation of Jilin Province (No. 20180101216JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehui Wang.

Additional information

Communicating Editor: Gopal Basak

Appendix

Appendix

Denote \({\mathcal {B}}=\{\beta \in {\mathbf {R}}^{p}:\Vert \beta \Vert =1\), and the first non-zero component of \(\beta \) is positive\(\}\), then \(\beta _{0}\) is an inner point of the compact set \({\mathcal {B}}\). Meanwhile, the assumptions \(\Vert {\hat{\beta }}-\beta _{0}\Vert =O_{P}(T^{-1/2})\) and \(\Vert {\hat{\theta }}-\theta _{0}\Vert =O_{P}(T^{-1/2})\) are required for the following proofs as in [6, 20].

Proof of Theorem A.1

As \(\Vert {\hat{\beta }}-\beta _{0}\Vert =O_{P}(T^{-1/2})\), it is easy to get that \({\hat{g}}(w;{\hat{\beta }},{\hat{\theta }})-{\hat{g}}(w;\beta _{0},{\hat{\theta }})=O_{P}(T^{-1/2})\) by Lagrange mean-value theorem. Note that

$$\begin{aligned}&\sqrt{Th}[{\hat{g}}(w;{\hat{\beta }},{\hat{\theta }})-g_{0}(w)]\nonumber \\&\quad = \sqrt{Th}[{\hat{g}}(w;{\hat{\beta }},{\hat{\theta }})- {\hat{g}}(w;\beta _{0},{\hat{\theta }})+{\hat{g}}(w;\beta _{0},{\hat{\theta }})-g_{0}(w)] \nonumber \\&\quad = \sqrt{Th}[{\hat{g}}(w;{\hat{\beta }},{\hat{\theta }})-{\hat{g}}(w;\beta _{0},{\hat{\theta }})]+\sqrt{Th}[{\hat{g}}(w;\beta _{0},{\hat{\theta }})-g_{0}(w)], \end{aligned}$$
(A.1)

then we only need to illustrate the asymptotic property of \({\hat{g}}(w;\beta _{0},{\hat{\theta }})\). Minimize

$$\begin{aligned} \sum _{t=1}^{T}\{Y_{t}-[a+b(\beta _{0} ^\top X_{t}-w)]Y_{t-1}-{\hat{\theta }} ^\top Z_{t}\}^{2}K_{h}(\beta _{0} ^\top X_{t}-w), \end{aligned}$$

with respect to (ab), and \(({\hat{g}}(w;\beta _{0},{\hat{\theta }}),{\hat{g}}'(w;\beta _{0},{\hat{\theta }}))\) can be obtained, whose form is similar to that of (2.2) with \((\beta ,\theta )\) replaced by \((\beta _{0},{\hat{\theta }})\).

   According to Doukhan et al. [9], a strongly mixing stationary sequence is an ergodic sequence, so that \(\{Y_t,t\ge 1\}\) is a strictly stationary and ergodic sequence. Therefore, the second moment of \(Y_{t-1}\) is constant, denoted as \(\gamma =E(Y_{t-1}^{2})\), because of the constant mean and constant variance in stationary sequences.

   Based on the Lemma 1 in [29], we can get that, for each \(j=0,1,2,3\),

$$\begin{aligned}&\frac{1}{T}\sum _{t=1}^{T}\left\{ Y_{t-1}^{2}\left( \frac{\beta _{0}^\top X_{t}-w}{h}\right) ^{j}K_{h}(\beta _{0}^\top X_{t}-w) \right. \\&\qquad \left. -E\left[ Y_{t-1}^{2}\left( \frac{\beta _{0}^\top X_{t}-w}{h}\right) ^{j}K_{h}(\beta _{0}^\top X_{t}-w)\right] \right\} \\&\quad =O\left( \left\{ \frac{\log T}{Th}\right\} ^{1/2}\right) , \mathrm{a.s.}, \end{aligned}$$

uniformly for \(w \in {\mathcal {W}}\), where,

$$\begin{aligned}&E\left[ Y_{t-1}^{2}\left( \frac{\beta _{0}^\top X_{t}-w}{h}\right) ^{j}K_{h}(\beta _{0}^\top X_{t}-w)\right] \\&\quad = E(Y_{t-1}^{2}) E\left[ \left( \frac{\beta _{0}^\top X_{t}-w}{h}\right) ^{j}K_{h}(\beta _{0}^\top X_{t}-w)\right] \\&\quad = \gamma f_{0}(w)\mu _{j}+O(h), \end{aligned}$$

i.e.,

$$\begin{aligned} R_{T,j}(w;\beta _{0},{\hat{\theta }}) = \gamma f_{0}(w)\mu _{j}+O\left( \left\{ \frac{\log T}{Th}\right\} ^{1/2}+h\right) ,\ \mathrm{a.s.} \end{aligned}$$
(A.2)

So, it is followed immediately that

$$\begin{aligned} R_{T}(w;\beta _{0},{\hat{\theta }})=R(w)+O\left( \left\{ \frac{\log T}{Th}\right\} ^{1/2}+h\right) ,\ \mathrm{a.s.}, \end{aligned}$$

where \(R(w)=\gamma f_{0}(w)\mathrm{diag}\{1,\mu _{2}\}\). Using the fact that

$$\begin{aligned} (A+hB)^{-1}=A^{-1}-hA^{-1}BA^{-1}+O(h^{2}), \end{aligned}$$

we have

$$\begin{aligned} R_{T}^{-1}(w;\beta _{0},{\hat{\theta }}) = R^{-1}(w)+O\left( \left\{ \frac{\log T}{Th}\right\} ^{1/2}+h\right) ,\ \mathrm{a.s.}, \end{aligned}$$
(A.3)

uniformly for \(w \in {\mathcal {W}}\). Let

$$\begin{aligned}&\eta _{T,j}^{*}(w;\beta _{0},{\hat{\theta }})\\&\quad =\frac{1}{T}\sum _{t=1}^{T} [Y_{t}-{\hat{\theta }}^\top Z_{t} -g_{0}(\beta _{0}^\top X_{t})Y_{t-1}]Y_{t-1}\left( \frac{\beta _{0}^\top X_{t}-w}{h}\right) ^{j}\\&K_{h}(\beta _{0}^\top X_{t}-w),j=0,1 \end{aligned}$$

and

$$\begin{aligned} \eta _{T}^{*}(w;\beta ,{\hat{\theta }})=\begin{pmatrix} \eta _{T,0}^{*}(w;\beta _{0},{\hat{\theta }})\\ \eta _{T,1}^{*}(w;\beta _{0},{\hat{\theta }}) \end{pmatrix}. \end{aligned}$$

As

$$\begin{aligned}&E\left\{ [Y_{t}-{\hat{\theta }}^\top Z_{t}-g_{0}(\beta _{0}^\top X_{t})Y_{t-1}]Y_{t-1}\left( \frac{\beta _{0}^\top X_{t} -w}{h}\right) ^{j}K_{h}(\beta _{0}^\top X_{t}-w)\right\} \\&\quad = E\left\{ [Y_{t}-\theta _{0}^\top Z_{t}+\theta _{0}^\top Z_{t}-{\hat{\theta }}^\top Z_{t}-g_{0}(\beta _{0}^\top X_{t})Y_{t-1}]Y_{t-1} \right. \\&\qquad \left. \left( \frac{\beta _{0}^\top X_{t} -w}{h}\right) ^{j}K_{h}(\beta _{0}^\top X_{t}-w)\right\} \\&\quad = E\left[ \varepsilon _{t} Y_{t-1}\left( \frac{\beta _{0}^\top X_{t} -w}{h}\right) ^{j}K_{h}(\beta _{0}^\top X_{t}-w)\right] \\&\qquad +E\left[ (\theta _{0}-{\hat{\theta }})^\top Z_{t}Y_{t-1} \left( \frac{\beta _{0}^\top X_{t}-w}{h}\right) ^{j}K_{h}(\beta _{0}^\top X_{t}-w)\right] \\&\quad = O(T^{-1/2}), \end{aligned}$$

by Lemma 1 in [29] and arguments similar to that in the previous proof, we can show that

$$\begin{aligned} \eta _{T,j}^{*}(w;\beta _{0},{\hat{\theta }})=O\left( \left\{ \frac{\log T}{Th}\right\} ^{1/2}+T^{-1/2}\right) ,\ \mathrm{a.s.}, \end{aligned}$$

uniformly for \(w \in {\mathcal {W}}\). Using Taylor’s expansion for \(g_{0}(\beta _{0}^\top X_{t})\) at w, it is presented that

$$\begin{aligned}&\eta _{T,j}(w;\beta _{0},{\hat{\theta }})-\eta _{T,j}^{*}(w;\beta _{0},{\hat{\theta }})\\&\quad = R_{T,j}(w;\beta _{0},{\hat{\theta }})g_{0}(w)+hR_{T,j+1}(w;\beta _{0},{\hat{\theta }})g_{0}'(w)\\&\qquad +\frac{1}{2}h^{2}R_{T,j+2}(w;\beta _{0},{\hat{\theta }})g_{0}''(w)+o(h^{2}),\ \mathrm{a.s.}, \end{aligned}$$

so that

$$\begin{aligned}&\eta _{T}(w;\beta _{0},{\hat{\theta }})-\eta _{T}^{*}(w;\beta _{0},{\hat{\theta }}) = R_{T}(w;\beta _{0},{\hat{\theta }})\begin{pmatrix} g_{0}(w) \\ hg_{0}'(w) \end{pmatrix}\nonumber \\&\qquad +\frac{1}{2}h^{2}g_{0}''(w)\begin{pmatrix} R_{T,2}(w;\beta _{0},{\hat{\theta }}) \\ R_{T,3}(w;\beta _{0},{\hat{\theta }}) \end{pmatrix} +o(h^{2}),\ \mathrm{a.s.} \end{aligned}$$
(A.4)

Thus, from the formulae (A.2), (A.3) and (A.4) above, it follows that

$$\begin{aligned} \begin{pmatrix} {\hat{g}}(w;\beta _{0},{\hat{\theta }})-g_{0}(w) \\ h[{\hat{g}}'(w;\beta _{0},{\hat{\theta }})-g_{0}'(w)] \end{pmatrix}= & {} R^{-1}(w)\eta _{T}^{*}(w;\beta _{0},{\hat{\theta }})\\&+\frac{1}{2}h^{2}g_{0}''(w)\begin{pmatrix} \mu _{2} \\ \frac{\mu _{3}}{\mu _{2}} \end{pmatrix} +o(T^{-1/2}+h^{2}),\ \mathrm{a.s.} \end{aligned}$$

Clearly,

$$\begin{aligned} {\hat{g}}(w;\beta _{0},{\hat{\theta }})-g_{0}(w)= & {} \gamma ^{-1}f_{0}^{-1}(w)\eta _{T,0}^{*}(w;\beta _{0},{\hat{\theta }})\\&+\frac{1}{2}h^{2}g_{0}''(w)\mu _{2}+o_{P}(T^{-1/2}+h^{2}), \end{aligned}$$

uniformly for \(w \in {\mathcal {W}}\).

By simple calculation, we have

$$\begin{aligned}&\sqrt{Th}\eta _{T,0}^{*}(w;\beta _{0},{\hat{\theta }}) \\&\quad = \sqrt{Th} \frac{1}{T}\sum _{t=1}^{T}[Y_{t}-{\hat{\theta }}^\top Z_{t} -g_{0}(\beta _{0}^\top X_{t})Y_{t-1}]Y_{t-1}K_{h}(\beta _{0}^\top X_{t}-w) \\&\quad = \sqrt{Th}\left\{ \frac{1}{T}\sum _{t=1}^{T}[Y_{t}-\theta _{0}^\top Z_{t} -g_{0}(\beta _{0}^\top X_{t})Y_{t-1}]Y_{t-1}K_{h}(\beta _{0}^\top X_{t}-w)\right. \\&\qquad \left. +O_{P}(T^{-1/2})\right\} \\&\quad = \sqrt{Th}[\frac{1}{T}\sum _{t=1}^{T}\varepsilon _{t}Y_{t-1}K_{h}(\beta _{0}^\top X_{t}-w)]+o_{P}(1)\\&\quad = \frac{1}{\sqrt{T}}\sum _{t=1}^{T}\{\sqrt{h}\varepsilon _{t}Y_{t-1}K_{h}(\beta _{0}^\top X_{t}-w) -\sqrt{h}E[\varepsilon _{t}Y_{t-1}K_{h}(\beta _{0}^\top X_{t}-w)]\}\\&\qquad +o_{P}(1). \end{aligned}$$

By Slutsky’s theorem and Theorem 4.4 of [21], it can be obtained immediately that

$$\begin{aligned} \sqrt{Th}\eta _{T,0}^{*}(w;\beta _{0},{\hat{\theta }}) \overset{L}{\rightarrow }N(0,\gamma \nu _{0}\sigma ^{2}f_{0}(w)). \end{aligned}$$

Consequently, we can derive

$$\begin{aligned} \sqrt{Th}\left[ {\hat{g}}(w;\beta _{0},{\hat{\theta }})-g_{0}(w)-\frac{1}{2}h^{2}g_{0}''(w)\mu _{2}\right] \overset{L}{\rightarrow }N(0,\gamma ^{-1}\nu _{0}\sigma ^{2}f_{0}^{-1}(w)), \end{aligned}$$

and hence, from (A.1),

$$\begin{aligned} \sqrt{Th}\left[ {\hat{g}}(w;{\hat{\beta }},{\hat{\theta }})-g_{0}(w)-\frac{1}{2}h^{2}g_{0}''(w)\mu _{2}\right] \overset{L}{\rightarrow }N(0,\gamma ^{-1}\nu _{0}\sigma ^{2}f_{0}^{-1}(w)). \end{aligned}$$

The proof is complete. \(\square \)

Proof of Theorem A.2

By (2.3), with \(\lambda \) as the Lagrange multiplier, it is easy to know that \(({\hat{\beta }},{\hat{\theta }})\) is the solution to

$$\begin{aligned}&\lambda \begin{pmatrix} {\hat{\beta }} \\ 0 \end{pmatrix} +\frac{1}{\sqrt{T}}\sum _{t=1}^{T}[Y_{t}-{\hat{g}}({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})Y_{t-1}\nonumber \\&\qquad -{\hat{\theta }}^\top Z_{t}] \begin{pmatrix} {\hat{g}}'({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})Y_{t-1}X_{t}\\ Z_{t} \end{pmatrix} = 0, \end{aligned}$$
(A.5)

which can be rewritten as

$$\begin{aligned}&\lambda \begin{pmatrix} {\hat{\beta }} \\ 0 \end{pmatrix} +\frac{1}{\sqrt{T}}\sum _{t=1}^{T}\varepsilon _{t} \begin{pmatrix} {\hat{g}}'({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})Y_{t-1}X_{t}\\ Z_{t} \end{pmatrix}\\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T}[({\hat{\theta }}-\theta _{0})^\top Z_{t}] \begin{pmatrix} {\hat{g}}'({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})Y_{t-1}X_{t}\\ Z_{t} \end{pmatrix}\\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T} [{\hat{g}}({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})]Y_{t-1}\\&\qquad \begin{pmatrix} {\hat{g}}'({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})Y_{t-1}X_{t}\\ Z_{t} \end{pmatrix} = 0. \end{aligned}$$

Through direct calculation, we find that

$$\begin{aligned}&\lambda \begin{pmatrix} {\hat{\beta }} \\ 0 \end{pmatrix} +\frac{1}{\sqrt{T}}\sum _{t=1}^{T}\varepsilon _{t}A_{t} -\frac{1}{\sqrt{T}}\sum _{t=1}^{T}[({\hat{\theta }}-\theta _{0})^\top Z_{t}]A_{t}\\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T} [{\hat{g}}({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})]Y_{t-1} A_{t} \\&\qquad +\frac{1}{\sqrt{T}}\sum _{t=1}^{T}\varepsilon _{t}B_{t} -\frac{1}{\sqrt{T}}\sum _{t=1}^{T}[({\hat{\theta }}-\theta _{0})^\top Z_{t}]B_{t} \\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T} [{\hat{g}}({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})]Y_{t-1}B_{t} = 0, \end{aligned}$$

where,

$$\begin{aligned} A_{t}= & {} \begin{pmatrix} g_{0}'(\beta _{0}^\top X_{t})Y_{t-1}X_{t}\\ Z_{t} \end{pmatrix},~~~B_{t}=\begin{pmatrix} [{\hat{g}}'({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }}) -g_{0}'(\beta _{0}^\top X_{t})]Y_{t-1}X_{t}\\ Z_{t} \end{pmatrix}. \end{aligned}$$

So, we have the equation

$$\begin{aligned}&\lambda \begin{pmatrix} {\hat{\beta }} \\ 0 \end{pmatrix} +\frac{1}{\sqrt{T}}\sum _{t=1}^{T}\varepsilon _{t}A_{t} -\frac{1}{\sqrt{T}}\sum _{t=1}^{T}[({\hat{\theta }}-\theta _{0})^\top Z_{t}]A_{t} \nonumber \\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T} [{\hat{g}}({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})]Y_{t-1} A_{t} \nonumber \\&\qquad +o_{P}(1)= 0. \end{aligned}$$
(A.6)

Obviously,

$$\begin{aligned}&{\hat{g}}({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})\nonumber \\&\quad = {\hat{g}}({\hat{\beta }}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }}) +{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }}) -g_{0}(\beta _{0}^\top X_{t})\nonumber \\&\quad = {\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})+{\hat{g}}'(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }}) ({\hat{\beta }}-\beta _{0})^\top X_{t}+o_{p}(({\hat{\beta }}-\beta _{0})^\top X_{t})\nonumber \\&\qquad -{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})+{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }}) -g_{0}(\beta _{0}^\top X_{t}) \nonumber \\&\quad = {\hat{g}}'(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})({\hat{\beta }}-\beta _{0})^\top X_{t} +{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})+o_{P}(T^{-1/2})\nonumber \\&\quad = g_{0}'(\beta _{0}^\top X_{t})({\hat{\beta }}-\beta _{0})^\top X_{t} +{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})\nonumber \\&\qquad +[{\hat{g}}'(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}'(\beta _{0}^\top X_{t})]({\hat{\beta }} -\beta _{0})^\top X_{t}+o_{P}(T^{-1/2})\nonumber \\&\quad = g_{0}'(\beta _{0}^\top X_{t})({\hat{\beta }}-\beta _{0})^\top X_{t} +{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})+o_{P}(T^{-1/2}).\nonumber \\ \end{aligned}$$
(A.7)

Substituting (A.7) into (A.6), we can obtain

$$\begin{aligned}&\lambda \begin{pmatrix} {\hat{\beta }} \\ 0 \end{pmatrix} +\frac{1}{\sqrt{T}}\sum _{t=1}^{T}\varepsilon _{t}A_{t} -\frac{1}{\sqrt{T}}\sum _{t=1}^{T}[({\hat{\theta }}-\theta _{0})^\top Z_{t}]A_{t}\\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T} g_{0}'(\beta _{0}^\top X_{t})({\hat{\beta }}-\beta _{0})^\top X_{t}Y_{t-1}A_{t}\\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T} [{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})]Y_{t-1} A_{t}+o_{P}(1) = 0, \end{aligned}$$

meaning that

$$\begin{aligned}&\lambda \begin{pmatrix} {\hat{\beta }} \\ 0 \end{pmatrix} +\frac{1}{\sqrt{T}}\sum _{t=1}^{T}\varepsilon _{t}A_{t}\\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T}A_{t}A_{t}^\top \begin{pmatrix} {\hat{\beta }}-\beta _{0} \\ {\hat{\theta }}-\theta _{0} \end{pmatrix} -\frac{1}{\sqrt{T}}\sum _{t=1}^{T} [{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})]Y_{t-1}A_{t}\\&\qquad +o_{P}(1) = 0. \end{aligned}$$

Using the Ergodic theorem, we have

$$\begin{aligned}&\lambda \begin{pmatrix} {\hat{\beta }} \\ 0 \end{pmatrix} +\frac{1}{\sqrt{T}}\sum _{t=1}^{T}\varepsilon _{t}A_{t} -\sqrt{T}A \begin{pmatrix} {\hat{\beta }}-\beta _{0} \\ {\hat{\theta }}-\theta _{0} \end{pmatrix}\nonumber \\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T} [{\hat{g}}(\beta _{0}^\top X_{t};{\hat{\beta }},{\hat{\theta }})-g_{0}(\beta _{0}^\top X_{t})]Y_{t-1}A_{t}+o_{P}(1) = 0, \end{aligned}$$
(A.8)

where

$$\begin{aligned} A=E[A_{t}A_{t}^\top ]. \end{aligned}$$

On the other hand, following the estimation procedure, \(({\hat{a}},{\hat{b}})\equiv ({\hat{g}}(w;{\hat{\beta }},{\hat{\theta }}),{\hat{g}}'(w;\hat{\beta },{\hat{\theta }}))\) is the minimizer of

$$\begin{aligned} \sum _{t=1}^{T}\{Y_{t}-[a+b({\hat{\beta }} ^\top X_{t}-w)]Y_{t-1} -{\hat{\theta }} ^\top Z_{t}\}^{2}K_{h}({\hat{\beta }} ^\top X_{t}-w), \end{aligned}$$

then, \(({\hat{a}},{\hat{b}})\) satisfies the formula

$$\begin{aligned}&\frac{1}{T}\sum _{t=1}^{T}\{Y_{t}-[{\hat{a}}+h{\hat{b}}({\hat{\beta }}^\top X_{t}-w)/h]Y_{t-1} -{\hat{\theta }}^\top Z_{t}\}Y_{t-1} \nonumber \\&\qquad \begin{pmatrix} 1 \\ ({\hat{\beta }}^\top X_{t}-w)/h \end{pmatrix} K_{h}({\hat{\beta }}^\top X_{t}-w) = 0, \end{aligned}$$
(A.9)

via Taylor expansion and using the conditions on h, we get

$$\begin{aligned}&\frac{1}{T}\sum _{t=1}^{T}\{Y_{t}-[a+b(\beta _{0}^\top X_{t}-w)]Y_{t-1}-\theta _{0}^\top Z_{t}\}Y_{t-1}\\&\qquad \begin{pmatrix} 1 \\ (\beta _{0}^\top X_{t}-w)/h \end{pmatrix} K_{h}(\beta _{0}^\top X_{t}-w)\\&\qquad -B_{T1}\begin{pmatrix} {\hat{a}}-a \\ h({\hat{b}}-b) \end{pmatrix} -B_{T2}({\hat{\beta }}-\beta _{0})-B_{T3}({\hat{\theta }}-\theta _{0})\\&\qquad +o_{P}(T^{-1/2})+O_{P}(h^{2}) = 0, \end{aligned}$$

where

$$\begin{aligned} B_{T1}= & {} \frac{1}{T}\sum _{t=1}^{T}Y_{t-1}^{2}K_{h}(\beta _{0}^\top X_{t}-w)\begin{pmatrix} 1 &{} \frac{\beta _{0}^\top X_{t}-w}{h} \\ \frac{\beta _{0}^\top X_{t}-w}{h} &{} (\frac{\beta _{0}^\top X_{t}-w}{h})^{2} \end{pmatrix},\\ B_{T2}= & {} \frac{1}{T}\sum _{t=1}^{T}g_{0}'(w)Y_{t-1}^{2}K_{h}(\beta _{0}^\top X_{t}-w)\begin{pmatrix} X_{t}^\top \\ X_{t}^\top \frac{\beta _{0}^\top X_{t}-w}{h} \end{pmatrix} \end{aligned}$$

and

$$\begin{aligned} B_{T3}=\frac{1}{T}\sum _{t=1}^{T}Y_{t-1}K_{h}(\beta _{0}^\top X_{t}-w)\begin{pmatrix} Z_{t}^\top \\ Z_{t}^\top \frac{\beta _{0}^\top X_{t}-w}{h} \end{pmatrix}. \end{aligned}$$

Similarly, from Lemma 1 in [29], we provide the asymptotic counterparts of \(B_{T,j}(j=1,2,3)\) as follows:

$$\begin{aligned} B_{T1}= & {} \gamma f_{0}(w)\mathrm{diag}\{1,\mu _{2}\}+O_{P}\left( \left\{ \frac{\log T}{Th}\right\} ^{1/2}+h\right) ,\\ B_{T2}= & {} g_{0}'(w) \left[ \begin{pmatrix} \gamma f_{0}(w)E(X_{t}^\top |\beta _{0}^\top X_{t}=w) \\ 0 \end{pmatrix} +O_{P}\left( \left\{ \frac{\log T}{Th}\right\} ^{1/2}+h\right) \right] \end{aligned}$$

and

$$\begin{aligned} B_{T3}=\begin{pmatrix} E(Y_{t-1})f_{0}(w)E(Z_{t}^\top | \beta _{0}^\top X_{t}=w)\\ 0 \end{pmatrix} +O_{P}\left( \left\{ \frac{\log T}{Th}\right\} ^{1/2}+h\right) . \end{aligned}$$

Thus,

$$\begin{aligned} \begin{pmatrix} {\hat{a}}-a \\ h({\hat{b}}-b) \end{pmatrix}= & {} \frac{1}{T}\sum _{t=1}^{T}\varepsilon _{t}Y_{t-1}\gamma ^{-1}f_{0}^{-1}(w) \begin{pmatrix} 1 \\ \frac{\beta _{0}^\top X_{t}-w}{h\mu _{2}} \end{pmatrix} K_{h}(\beta _{0}^\top X_{t}-w)\\&-\gamma ^{-1}f_{0}^{-1}(w) \begin{pmatrix} g_{0}'(w)E(X_{t}^\top |\beta _{0}^\top X_{t}=w)\gamma f_{0}(w) \\ 0 \end{pmatrix} ({\hat{\beta }}-\beta _{0})\\&-\gamma ^{-1}f_{0}^{-1}(w) \begin{pmatrix} E(Z_{t}^\top |\beta _{0}^\top X_{t}=w)E(Y_{t-1}) f_{0}(w) \\ 0 \end{pmatrix} ({\hat{\theta }}-\theta _{0})\\&+o_{P}(T^{-1/2}). \end{aligned}$$

Then, it can be shown that

$$\begin{aligned} {\hat{g}}(w;{\hat{\beta }},{\hat{\theta }})-g_{0}(w)= & {} \frac{1}{T}\sum _{t=1}^{T}\gamma ^{-1}f_{0}^{-1}(w) Y_{t-1}K_{h}(\beta _{0}^\top X_{t}-w)\varepsilon _{t}\nonumber \\&-g_{0}'(w)({\hat{\beta }}-\beta _{0})^\top E(X_{t}|\beta _{0}^\top X_{t}=w)\nonumber \\&-\gamma ^{-1}E(Y_{t-1})({\hat{\theta }}-\theta _{0})^\top E(Z_{t}|\beta _{0}^\top X_{t}=w)\nonumber \\&+o_{P}(T^{-1/2}). \end{aligned}$$
(A.10)

Substituting (A.10) into (A.8) and applying the Ergodic theorem at the same time, we get

$$\begin{aligned}&\lambda \begin{pmatrix} {\hat{\beta }} \\ 0 \end{pmatrix} +\frac{1}{\sqrt{T}}\sum _{t=1}^{T}\varepsilon _{t}A_{t} -\sqrt{T}B \begin{pmatrix} {\hat{\beta }}-\beta _{0} \\ {\hat{\theta }}-\theta _{0} \end{pmatrix}\nonumber \\&\qquad -\frac{1}{\sqrt{T}}\sum _{t=1}^{T} \frac{1}{T}\sum _{l=1}^{T}[\gamma ^{-1}f_{0}^{-1}(\beta _{0}^\top X_{t})Y_{l-1} Y_{t-1}K_{h}(\beta _{0}^\top X_{l}-\beta _{0}^\top X_{t})A_{t}\varepsilon _{l}]\nonumber \\&\qquad +o_{P}(1) = 0, \end{aligned}$$
(A.11)

where

$$\begin{aligned} B=E[A_{t}A_{t}^\top ]-E\left[ A_{t} \begin{pmatrix} g_{0}'(\beta _{0}^\top X_{t})Y_{t-1}E(X_{t}|\beta _{0}^\top X_{t})\\ \gamma ^{-1}Y_{t-1}E(Y_{t-1})E(Z_{t}|\beta _{0}^\top X_{t}) \end{pmatrix}^\top \right] . \end{aligned}$$

Handle the fourth term in (A.11) by interchanging the summations and we have

$$\begin{aligned} -\frac{1}{\sqrt{T}}\sum _{l=1}^{T}\varepsilon _{l}Y_{l-1}\frac{1}{T}\sum _{t=1}^{T} [\gamma ^{-1}f_{0}^{-1}(\beta _{0}^\top X_{t})Y_{t-1}K_{h}(\beta _{0}^\top X_{l}-\beta _{0}^\top X_{t})A_{t}]. \end{aligned}$$

Furthermore, by the Ergodic theorem, the term is equivalent asymptotically to

$$\begin{aligned} -\frac{1}{\sqrt{T}}\sum _{l=1}^{T}\varepsilon _{l}Y_{l-1}E[ \gamma ^{-1}f_{0}^{-1}(\beta _{0}^\top X_{t})Y_{t-1}K_{h}(\beta _{0}^\top X_{l}-\beta _{0}^\top X_{t})A_{t}], \end{aligned}$$

i.e.,

$$\begin{aligned} -\frac{1}{\sqrt{T}}\sum _{l=1}^{T}\varepsilon _{l}Y_{l-1} \begin{pmatrix} g_{0}'(\beta _{0}^\top X_{l})E(X_{l}|\beta _{0}^\top X_{l}) \\ \gamma ^{-1}E(Y_{t-1})E(Z_{l}|\beta _{0}^\top X_{l}) \end{pmatrix}. \end{aligned}$$
(A.12)

For convenience, let

$$\begin{aligned} P_{\beta }=\begin{pmatrix} I-\beta _{0}\beta _{0}^\top &{} 0 \\ 0 &{} I \end{pmatrix}. \end{aligned}$$

Combining (A.11) and (A.12), and multiplying by \(P_{\beta }\), we obtain

$$\begin{aligned}&P_{\beta }B\sqrt{T}\begin{pmatrix} {\hat{\beta }}-\beta _{0} \\ {\hat{\theta }}-\theta _{0} \end{pmatrix} \nonumber \\&\quad =\frac{1}{\sqrt{T}}\sum _{t=1}^{T}\varepsilon _{t}P_{\beta } \begin{pmatrix} g_{0}'(\beta _{0}^\top X_{t})Y_{t-1}[X_{t}-E(X_{t}|\beta _{0}^\top X_{t})] \\ Z_{t}-\gamma ^{-1}E(Y_{t-1})Y_{t-1}E(Z_{t}|\beta _{0}^\top X_{t}) \end{pmatrix} +o_{P}(1). \end{aligned}$$
(A.13)

By Slutsky’s theorem and Theorem 4 of [9], we verify that

$$\begin{aligned} \sqrt{T}\begin{pmatrix} {\hat{\beta }}-\beta _{0} \\ {\hat{\theta }}-\theta _{0} \end{pmatrix} \overset{L}{\rightarrow }N(0,\sigma ^{2}B^{-1}V(B^{-1}){^\top }), \end{aligned}$$

where

$$\begin{aligned} V=\begin{pmatrix} V_{11} &{} V_{12} \\ V_{21} &{} V_{22} \end{pmatrix} \end{aligned}$$

with

$$\begin{aligned} V_{11}= & {} \gamma E\{[g_{0}'(\beta _{0}^\top X_{t})]^{2}[X_{t}-E(X_{t}|\beta _{0}^\top X_{t})][X_{t} -E(X_{t}|\beta _{0}^\top X_{t})]^\top \},\\ V_{12}= & {} E(Y_{t-1})E\{g_{0}'(\beta _{0}^\top X_{t})[X_{t}-E(X_{t}|\beta _{0}^\top X_{t})][Z_{t}-E(Z_{t}|\beta _{0}^\top X_{t})]^\top \}, \\ V_{21}= & {} E(Y_{t-1})E\{g_{0}'(\beta _{0}^\top X_{t})[Z_{t}-E(Z_{t}|\beta _{0}^\top X_{t})][X_{t}-E(X_{t}|\beta _{0}^\top X_{t})]^\top \},\\ V_{22}= & {} \{1-\gamma ^{-1}[E(Y_{t-1})]^{2}\}E(Z_{t}Z_{t}^\top )+\gamma ^{-1}[E(Y_{t-1})]^{2} E\{[Z_{t}\\&-E(Z_{t}|\beta _{0}^\top X_{t})][Z_{t} -E(Z_{t} |\beta _{0}^\top X_{t})]^\top \}. \end{aligned}$$

This completes the proof of Theorem 3.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wang, D. Statistical inference for single-index-driven varying-coefficient time series model with explanatory variables. Proc Math Sci 131, 21 (2021). https://doi.org/10.1007/s12044-021-00614-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-021-00614-x

Keywords

Mathematics Subject Classification

Navigation