Skip to main content
Log in

Existence and concentration of solution for a class of fractional Hamiltonian systems with subquadratic potential

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this article, we consider the following fractional Hamiltonian systems:

$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$

where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch T, Pankov A and Wang Z, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math.  3 (2001) 549–569

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson D, Schumer R and Meerschaert M. et al., Fractional dispersion, Lévy motion, and the MADE tracer test, Transp. Porous Med.  42 (2001) 211–240

    Article  Google Scholar 

  3. Benson D, Wheatcraft S and Meerschaert M, Application of a fractional advection-dispersion equation, Water Resour. Res.  36 (2000) 1403–1412

    Article  Google Scholar 

  4. Benson D, Wheatcraft S and Meerschaert M, The fractional-order governing equation of Lévy motion, Water Resour. Res.  36 (2000) 1413–1423

    Article  Google Scholar 

  5. Fix J and Roop J, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl.  48 (2004) 1017–1033

    Article  MathSciNet  MATH  Google Scholar 

  6. Herrmann R, Fractional calculus: An introduction for physicists, 2nd edition (2014) (World Scientific Publishing)

    Book  MATH  Google Scholar 

  7. Hilfer R Applications of fractional calculus in physics (2000) (Singapore: World Scientific)

    Book  MATH  Google Scholar 

  8. Jiao F and Zhou Y, Existence results for fractional boundary value problem via critical point theory, Int. J. Bif. and Chaos  22(N4) (2012) 1–17

    Article  MathSciNet  MATH  Google Scholar 

  9. Kilbas A, Srivastava H and Trujillo J Theory and applications of fractional differential equations, (2006) (Amsterdam: North-Holland Mathematics Studies) vol. 204

    Book  MATH  Google Scholar 

  10. Leszczynski J and Blaszczyk T, Modeling the transition between stable and unstable operation while emptying a silo, Granular Matter  13(4) (2011) 429–438

    Article  Google Scholar 

  11. Mendez A and Torres C, Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivative, Fract. Calc. Apple. Anal.  18(4) (2015) 875–890

    MathSciNet  MATH  Google Scholar 

  12. Omana W and Willem M, Homoclinic orbits for a class of Hamiltonian systems, Differ. Integr. Equ.  5(5) (1992) 1115–1120

    MathSciNet  MATH  Google Scholar 

  13. Podlubny I, Fractional differential equations, (1999) (New York: Academic Press)

    MATH  Google Scholar 

  14. Rabinowitz P and Tanaka K, Some result on connecting orbits for a class of Hamiltonian systems, Math. Z.  206(1) (1991) 473–499

    Article  MathSciNet  MATH  Google Scholar 

  15. Rabinowitz P, Minimax method in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65, Amer. Math. Soc. (1986)

  16. Sun J and Wu T-F, Homoclinic solutions for a second-order Hamiltonian system with a positive semi-definite matrix, Chaos, Solitons & Fractals  76 (2015) 24–31

    Article  MathSciNet  MATH  Google Scholar 

  17. Szymanek E, The application of fractional order differential calculus for the description of temperature profiles in a granular layer, in Advances in the Theory and Applications of Non-integer Order Systems, vol. 257 of Lecture Notes in Electrical Engineering (2013) pp. 243–248

  18. Torres C, Existence of solution for fractional Hamiltonian systems, Electronic Jour. Diff. Eq.  2013(259) (2013) 1–12

    MathSciNet  Google Scholar 

  19. Torres C, Ground state solution for a class of differential equations with left and right fractional derivatives, Math. Methods Appl. Sci  38 (2015) 5063–5073

    Article  MathSciNet  MATH  Google Scholar 

  20. Torres C, Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation, Commun Nonlinear Sci Numer Simulat.  27 (2015) 314–327

    Article  Google Scholar 

  21. West B, Bologna M and Grigolini P, Physics of fractal operators (2003) (Berlin: Springer-Verlag)

    Book  Google Scholar 

  22. Xu J, ORegan D and Zhang K, Multiple solutions for a class of fractional Hamiltonian systems, Fract. Calc. Apple. Anal.  18(1) (2015) 48–63

    MathSciNet  Google Scholar 

  23. Zhang Z and Yuang R, Variational approach to solutions for a class of fractional Hamiltonian systems. Math. Methods Appl. Sci.  37(13) (2014) 1873–1883

    Article  MathSciNet  Google Scholar 

  24. Zhang Z and Yuang R, Solutions for subquadratic fractional Hamiltonian systems without coercive conditions. Math. Methods Appl. Sci.  37(18) (2014) 2934–2945

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César E Torres Ledesma.

Additional information

Communicating Editor: S Kesavan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledesma, C.E.T. Existence and concentration of solution for a class of fractional Hamiltonian systems with subquadratic potential. Proc Math Sci 128, 50 (2018). https://doi.org/10.1007/s12044-018-0417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-018-0417-0

Keywords

Mathematics Subject Classification

Navigation