Skip to main content
Log in

Spherical means in annular regions in the n-dimensional real hyperbolic spaces

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let Z r,R be the class of all continuous functions f on the annulus Ann(r, R) in the real hyperbolic space \(\mathbb B^n\) with spherical means M s f(x) = 0, whenever s > 0 and \(x\in\mathbb B^n\) are such that the sphere S s (x) ⊂ Ann(r, R) and \(B_r(o)\subseteq B_s(x).\) In this article, we give a characterization for functions in Z r,R . In the case R = ∞, this result gives a new proof of Helgason’s support theorem for spherical means in the real hyperbolic spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cormack A M and Quinto E T, A Radon transform on spheres through the origin in R n and applications to the Darboux equation, Trans. Am. Math. Soc. 260(2) (1980) 575–581

    MathSciNet  MATH  Google Scholar 

  2. Epstein C L and Kleiner B, Spherical means in annular regions, Comm. Pure Appl. Math. 46(3) (1993) 441–451

    Article  MathSciNet  MATH  Google Scholar 

  3. Erdelyi A, MagnusW, Oberhettinger F and Tricomi F G, Higher transcendental functions (based on notes left by Harry Bateman) vol. I (New York: McGraw-Hill) (1953)

  4. Globevnik J, Zero integrals on circles and characterizations of harmonic and analytic functions, Trans. Am. Math. Soc. 317(1) (1990) 313–330

    Article  MathSciNet  Google Scholar 

  5. Helgason S, Groups and Geometric Analysis (New York: Academic Press) (1984)

    MATH  Google Scholar 

  6. Jaming P, Harmonic functions on the real hyperbolic ball I, Boundary values and atomic decomposition of Hardy spaces, Colloq. Math. 80(1) (1999) 63–82

    MathSciNet  MATH  Google Scholar 

  7. Mostow G D, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes tudes Sci. Publ. Math. No. 34 (1968) pp. 53–104

  8. Narayanan E K and Thangavelu S, A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on  \(\mathbb C^n\), Ann. Inst. Fourier (Grenoble) 56(2) (2006) 459–473

    Article  MathSciNet  MATH  Google Scholar 

  9. Quinto E T, Null spaces and ranges for the classical and spherical Radon transforms, J. Math. Anal. Appl. 90(2) (1982) 408–420

    Article  MathSciNet  MATH  Google Scholar 

  10. Rawat R and Srivastava R K, Twisted spherical means in annular regions in \(\mathbb C^n\) and support theorems, Ann. Inst. Fourier (Grenoble) 59(6) (2009) 2509–2523

    Article  MathSciNet  MATH  Google Scholar 

  11. Reimann H M, Invariant differential operators in hyperbolic space, Comment. Math. Helv. 57(3) (1982) 412–444

    Article  MathSciNet  MATH  Google Scholar 

  12. Thangavelu S, An introduction to the uncertainty principle, Prog. Math. (Boston: Birkhauser) (2004) vol. 217

    Book  Google Scholar 

  13. Volchkov V V, Integral Geometry and Convolution Equations (Dordrecht, The Nertherlands: Kluwer) (2003)

    Book  MATH  Google Scholar 

  14. Volchkov V Valery and Volchkov V Vitaly, Harmonic analysis ofmean periodic functions on symmetric spaces and the Heisenberg group, Springer Monographs in Mathematics (London: Springer-Verlag London Ltd) (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAMA RAWAT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAWAT, R., SRIVASTAVA, R.K. Spherical means in annular regions in the n-dimensional real hyperbolic spaces. Proc Math Sci 121, 311–325 (2011). https://doi.org/10.1007/s12044-011-0037-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12044-011-0037-4

Keywords

Navigation