Skip to main content

Advertisement

Log in

On heat transfer with unsteady MHD nanofluid von Karman flow with uniform suction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The current paper focusses on the heat transfer characteristics in nanofluid MHD flow across a decelerated rotating disk with uniform suction. It is concerned with conventional von Karman flow pumping, but unlike a typical Newtonian fluid, it uses water-based nanofluids made up of TiO\(_2\), Al\(_2\)O\(_3\), Ag, CuO and Cu nanoparticles. The thermal energy equation was added to the classic von Karman flow problem in three dimensions. After employing the similarity transformations used by Watson and Wang, the leading equations transformed into a set of ordinary differential equations were numerically solved by using bvp4c MATLAB solver. Graphs were used to evaluate the behavioural study of heat transfer for various parameters. Furthermore, it can be stated that for a smaller Prandtl number Pr, the heat transfer rate is highest for all types of naofluids. The rate of heat transmission reduces as suction parameter A increases. The local Nusselt numbers are calculated and analysed and the path to enhance heat transfer is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Th V Karman, Appl. Math. Mech.\(/\)Z. Angew. Math. Mech. 1, 233 (1921)

  2. E R Benton, J. Fluid Mech. 24, 781 (1966)

    Article  ADS  Google Scholar 

  3. H Ockendon, Q. J. Mech. Appl. Math. 25, 291 (1972)

    Article  Google Scholar 

  4. K Millsaps and K Pohlhausen, J. Aeronaut. Sci. 19, 120 (1952)

    Article  MathSciNet  Google Scholar 

  5. E M Sparrow and J L Gregg, J. Heat Transfer 81, 249 (1959)

    Article  Google Scholar 

  6. E M Sparrow and Re D Cess, Trans. ASME 29, 181 (1960)

  7. H A Attia, Fluid Dynam. Res. 23, 283 (1998)

    Article  ADS  Google Scholar 

  8. M Turkyilmazoglu and P Senel, Int. J. Therm. Sci. 63, 146 (2013)

    Article  Google Scholar 

  9. R J P Gowda, A Rauf, R N Kumar, B C Prasannakumara and S A Shehzad, Indian J. Phys. 96, 2041 (2022)

    Article  ADS  Google Scholar 

  10. R N Kumar, S Suresha, R J P Gowda, S B Megalamani and B C Prasannakumara, Pramana – J. Phys. 95, 180 (2021)

    Article  ADS  Google Scholar 

  11. L T Watson and C Y Wang, Phys. Fluids 22, 2267 (1979)

  12. M Rahman and H I Andersson, Heat Transfer Res. 5, 3 (2019)

    Google Scholar 

  13. S U S Choi, D A Singer and H P Wang, Asme Fed. 66, 99 (1995)

    Google Scholar 

  14. F Wang, S P Rani, K Sarada, R J P Gowda, H Y Zahran and E E Mahmoud, Case Stud. Therm. Eng. 33, 101930 (2022)

    Article  Google Scholar 

  15. J C Umavathi, D G Prakasha, Y M Alanazi, M MA Lashin, F S Al-Mubaddel, R Kumar and R J P Gowda, Int. J. Mod. Phys. B 37, 2350031 (2023)

    Article  ADS  Google Scholar 

  16. N Bachok, A Ishak and I Pop, Physica B 406, 1767 (2011)

  17. M M Rashidi, S Abelman and N F Mehr, Int. J. Heat Mass Transf. 62, 515 (2013)

    Article  Google Scholar 

  18. B C Prasannakumara and R J P Gowda, Waves Random Complex Media 1 (2022)

  19. R N Kumar, R J P Gowda, M M Alam, I Ahmad, Y M Mahrous, M R Gorji and B C Prasannakumara, Int. Commun. Heat Mass Transf. 126, 105445 (2021)

    Article  Google Scholar 

  20. M Turkyilmazoglu, Comput. Fluids 94, 139 (2014)

    Article  MathSciNet  Google Scholar 

  21. R N Kumar, F Gamaoun, A Abdulrahman, J S Chohan and R J Punith Gowda, Int. J. Mod. Phys. B 36, 2250170 (2022)

    Article  ADS  Google Scholar 

  22. Z Uddin, J. Appl. Fluid Mech. 10, 871 (2017)

    Article  Google Scholar 

  23. A Bhandari, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 135, 2201 (2020)

    Google Scholar 

  24. H F Oztop and E Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008)

    Article  Google Scholar 

  25. L F Shampine, J Kierzenka and M W Reichelt, Tutorial Notes 11, 437 (2000)

    Google Scholar 

  26. M Rahman, F Sharif, M Turkyilmazoglu and M S Siddiqui, Pramana – J. Phys. 96, 1 (2022)

    Article  Google Scholar 

  27. N Kelson and A Desseaux, ANZIAM J. 42, 837 (2000)

    Article  MathSciNet  Google Scholar 

  28. M Rahman and H I Andersson, Int. J. Heat Mass Transf. 112, 1057 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Turkyilmazoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M., Turkyilmazoglu, M., Bilal, M. et al. On heat transfer with unsteady MHD nanofluid von Karman flow with uniform suction. Pramana - J Phys 97, 146 (2023). https://doi.org/10.1007/s12043-023-02618-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02618-w

Keywords

PACS Nos

Navigation