Skip to main content
Log in

Spherically symmetric Buchdahl-type model via extended gravitational decoupling

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this article, we have obtained a gravitationally decoupled Class-I anisotropic solution for compact stars using the Buchdahl-type space–time geometry. The anisotropic solution is obtained by solving Einstein’s field equations via a complete geometric deformation (CGD) approach. This CGD approach transforms both gravitational potentials by introducing two unknown functions that govern the equations of motion for extra sources. The solutions for these deformation functions are derived using mimic constraint to density and equation of state (EoS) between extra source components rather than imposing a particular ansatz for them. To ensure that the solution describes a physically realisable stellar structure, we have tested the physical viability of the solution based on its regularity and stability conditions. We observed that the decoupling parameter suppresses the pressure, energy density and mass of the stellar objects. Also, the radii for several known astrophysical objects have been predicted for different values of the decoupling constant. The obtained results show that gravitational decoupling yields more compact objects than pure Einstein’s GR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R Ruderman, Class. Ann. Rev. Astron. Astrophys. 10, 427 (1972)

    Article  Google Scholar 

  2. R Bowers and E Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  3. L Herrera and N Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  4. L Herrera and W Barreto, Phys. Rev. D 88, 084022 (2013)

    Article  ADS  Google Scholar 

  5. D D Doneva and S S Yazadjiev, Phys. Rev. D 85, 124023 (2012)

    Article  ADS  Google Scholar 

  6. L Herrera, Phys. Rev. D 101, 104024 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. L Herrera and N O Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. R Sawyer and D Scalapino, Phys. Rev. D 7, 953 (1973)

    Article  ADS  Google Scholar 

  9. P B Jones, Astrophys. Space Sci. 33, 215 (1975)

    Article  ADS  Google Scholar 

  10. I Easson and C J Pethick, Phys. Rev. D 16, 275 (1977)

    Article  ADS  Google Scholar 

  11. M Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  12. A G V Cameron and V Canuto, in: Proc. 16th Solvay Conf. on Astrophysics and Gravitation: Neutron Stars: General Review (Editions de 1’UniversitC de Bruxelles, Bruxelles, 1973)

  13. R Rufini and S Bonazzola, Phys. Rev. 187, 1767 (1969)

    Article  ADS  Google Scholar 

  14. M Gleiser, Phys. Rev. D 38, 2376 (1988)

    Article  ADS  Google Scholar 

  15. W D Arnett, Astrophys. J. 218, 815 (1977)

    Article  ADS  Google Scholar 

  16. D Kazanas, Astrophys. J. 222, L109 (1978)

    Article  ADS  Google Scholar 

  17. D Kazanas and D Schramm, in: Sources of gravitational radiation edited by L Smarr (Cambridge University Press, Cambridge, 1979) p. 345

    Google Scholar 

  18. R Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  19. L Herrera and V Varela, Phys. Lett. A 189, 11 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  20. S K Maurya, A Banerjee and S Hansraj, Phys. Rev. D 97, 044022 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. A Errehymy and M Daoud, Eur. Phys. J. C 81, 556 (2021)

    Article  ADS  Google Scholar 

  22. A Errehymy, Y Khedif and M Daoud, Eur. Phys. J. C 81, 266 (2021)

    Article  ADS  Google Scholar 

  23. A Errehymy, M Daoud and E H Sayouty, Eur. Phys. J. C 79, 346 (2019)

    Article  ADS  Google Scholar 

  24. A Errehymy and M Daoud, Eur. Phys. J. C 80, 258 (2020)

    Article  ADS  Google Scholar 

  25. M S R Delgaty and K Lake, Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  26. H A Buchdahl, Phys. Rev. D 116, 1027 (1959)

    Article  ADS  Google Scholar 

  27. P C Vaidya and R Tikekar, J. Astrophys. Aston. 3, 325 (1982)

    Article  ADS  Google Scholar 

  28. R Tikekar, J. Math. Phys. 31, 2454 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  29. J Kumar and Y K Gupta, Astrophys. Space Sci. 345, 331 (2013)

    Article  ADS  Google Scholar 

  30. S D Maharaj and P G L Leach, J. Math. Phys. 37, 430 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  31. S Mukherjee, B C Paul and N K Dadhich, Class. Quantum Gravity 14, 3475 (1997)

    Article  ADS  Google Scholar 

  32. J Kumar, Y K Gupta and Pratibha, Astrophys. Space Sci. 333, 143 (2011)

    ADS  Google Scholar 

  33. Y K Gupta and M K Jasim, Astrophys. Space Sci. 272, 403 (2004)

    Article  ADS  Google Scholar 

  34. K Komathiraj and S D Maharaj, J. Math. Phys. 48, 042501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. A K Prasad, J Kumar and A Sarkar, Gen. Relativ. Gravit. 53, 108 (2021)

    Article  ADS  Google Scholar 

  36. J Kumar, H D Singh and A K Prasad, Phys. Dark Universe 34, 100880 (2021)

    Article  Google Scholar 

  37. J Kumar and Y K Gupta, Astrophys. Space Sci. 334, 273 (2011)

    Article  ADS  Google Scholar 

  38. J Ovalle, Phys. Rev. D 95, 104019 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. J Ovalle, Phys. Lett. B 788, 213 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. J Ovalle, Mod. Phys. Lett. A 23, 3247 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  41. J Ovalle, Gravitation and astrophysics (ICGA9) (World Scientific, Singapore, 2010) pp. 173–182

    Book  Google Scholar 

  42. J Ovalle and F Linares, Phys. Rev. D 88, 104026 (2013),

    Article  ADS  Google Scholar 

  43. J Ovalle, F Linares, A Pasqua and A Sotomayor, Class. Quantum Gravity 30, 175019 (2013)

    Article  ADS  Google Scholar 

  44. R Casadio, J Ovalle and R da Rocha, Class. Quantum Gravity 30, 175019 (2014)

    Google Scholar 

  45. R Casadio, J Ovalle and R da Rocha, Europhys. Lett. 110, 40003 (2015)

    Article  ADS  Google Scholar 

  46. R Casadio, J Ovalle and R da Rocha, Class. Quantum Gravity 32, 215020 (2015)

    Article  ADS  Google Scholar 

  47. J Ovalle, R Casadio and A Sotomayor, Adv. High Energy Phys. 2017, 9 (2017)

    Article  Google Scholar 

  48. J Ovalle and A Sotomayor, Eur. Phys. J. Plus 133, 428 (2018)

    Article  Google Scholar 

  49. L Gabbanelli, J Ovalle, A Sotomayor, Z Stuchlik and R Casadio, Eur. Phys. J. C 79, 486 (2019)

    Article  ADS  Google Scholar 

  50. E Morales and F Tello-Ortiz, Eur. Phys. J. C 78, 841 (2018)

    Article  ADS  Google Scholar 

  51. A R Graterol, Eur. Phys. J. Plus 133, 244 (2018)

    Article  Google Scholar 

  52. S K Maurya and F Tello-Ortiz, Eur. Phys. J. C 79, 85 (2019),

    Article  ADS  Google Scholar 

  53. K N Singh, S K Maurya, M K Jasim and F Rahaman, Eur. Phys. J. C 79, 851 (2019)

    Article  ADS  Google Scholar 

  54. S K Maurya and L S S Al-Farsi, Eur. Phys. J. Plus 136, 317 (2021)

    Article  Google Scholar 

  55. E Contreras, A Rincon and P Bargueño, Eur. Phys. J. C 79, 216 (2019)

    Article  ADS  Google Scholar 

  56. E Contreras and P Bargueño, Eur. Phys. J. C 78, 558 (2018)

    Article  ADS  Google Scholar 

  57. C Las Heras and P León, Fortsch. Phys. 66, 1800036 (2018)

  58. C Las Heras and P León, Eur. Phys. J. C 79, 990 (2019)

  59. L Gabbanelli, A Rincon and C Rubio, Eur. Phys. J. C 78, 370 (2018)

    Article  ADS  Google Scholar 

  60. A Rincon et al, Eur. Phys. J. C 79, 873 (2019)

    Article  ADS  Google Scholar 

  61. G Panotopoulos and A Rincón, Eur. Phys. J. C 78, 851 (2018)

    Article  ADS  Google Scholar 

  62. G  Abellán, A  Rincón, E Fuenmayor and E Contreras, Eur. Phys. J. Plus 135, 606 (2020)

    Article  Google Scholar 

  63. M Estrada and F Tello-Ortiz, Eur. Phys. J. Plus 133, 453 (2018)

    Article  Google Scholar 

  64. M Estrada, Eur. Phys. J. C 79, 918 (2019)

    Article  ADS  Google Scholar 

  65. S Hensh and Z Stuchlk, Eur. Phys. J. C 79, 834 (2019)

    Article  ADS  Google Scholar 

  66. P Leon and A Sotomayor, Fortschr. Phys. 69, 2100017 (2021)

    Article  Google Scholar 

  67. M Sharif and A Majid, Astrophys. Space Sci. 365, 42 (2020)

    Article  ADS  Google Scholar 

  68. M Zubair and H Azmat, Ann. Phys. 420, 168248 (2020)

    Article  Google Scholar 

  69. H Azmat and M Zubair, Eur. Phys. J. C Plus 136, 112 (2021);

    Article  Google Scholar 

  70. Q Muneer, M  Zubair and M Rahseed, Phys. Scr. 96, 125015 (2021)

    Article  ADS  Google Scholar 

  71. M Zubair, H Azmat and M Amin, Int. J. Mod. Phys. D (2021)

  72. S K Maurya et al, Eur. Phys. J. C 81, 848 (2021)

    Article  ADS  Google Scholar 

  73. S K Maurya et al, Eur. Phys. J. C 82, 49 (2022)

    Article  ADS  Google Scholar 

  74. S K Maurya et al, Astrophys. J. 925, 208 (2022)

    Article  ADS  Google Scholar 

  75. S K Maurya, Eur. Phys. J. C 80, 429 (2020)

    Article  ADS  Google Scholar 

  76. S K Maurya, K N Singh and B Dayanandan, Eur. Phys. J. C 80, 448 (2020)

    Article  ADS  Google Scholar 

  77. S K Maurya, A M Al Aamri, A K Al Aamri and R Nag, Eur. Phys. J. C 81, 701 (2021)

    Article  ADS  Google Scholar 

  78. M Sharif and Q Ama-Tul-Mughani, Ann. Phys. 415, 168122 (2020)

    Article  Google Scholar 

  79. M  Zubair, M  Amin and H  Azmat, Phys. Scr. 96, 125008 (2021)

    Article  ADS  Google Scholar 

  80. M Zubair, H Azmat and M Amin, Chin. J. Phys. 77, 898 (2022)

    Article  Google Scholar 

  81. S K Maurya et al, Fortschr. Phys. 69, 2100099 (2021)

    Article  Google Scholar 

  82. R Casadio, E Contreras, J Ovalle, A Sotomayor and Z Stuchlik, Eur. Phys. J. C 79, 826 (2019)

    Article  ADS  Google Scholar 

  83. C Arias, E Contreras, E Fuenmayor and A Ramos, Ann. Phys. 436, 168671 (2022)

    Article  Google Scholar 

  84. J Andrade and E Contreras, Eur. Phys. J. C 81, 889 (2021)

    Article  ADS  Google Scholar 

  85. M Carrasco-Hidalgo and E Contreras, Eur. Phys. J. C 81, 757 (2021)

    Article  ADS  Google Scholar 

  86. S K Maurya and R Nag, Eur. Phys. J. C 82, 48 (2022)

    Article  ADS  Google Scholar 

  87. S K Maurya, M Govender, S Kaur and R Nag, Eur. Phys. J. C 82, 100 (2022)

    Article  ADS  Google Scholar 

  88. S K Maurya, A Errehymy, R Nag and M Daoud, Fortschr. Phys. 70, 2200041 (2022)

    Article  Google Scholar 

  89. K R Karmarkar, Proc. Indian Acad. Sci. A 27, 56 (1948)

    Article  Google Scholar 

  90. H Stephani, D Kramer, M A H MacCallum, C Hoenselaers and E Herlt, Exact solution to Einstein’s field Equations (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  91. S N Pandey and S P Sharma, Gen. Relativ. Gravit. 14, 113 (1981)

    Article  ADS  Google Scholar 

  92. Y K Gupta and J Kumar, Astrophys. Space Sci. 336, 419 (2011)

    Article  ADS  Google Scholar 

  93. S K Maurya and S D Maharaj, Eur. Phys. J. A 54, 68 (2018)

    Article  ADS  Google Scholar 

  94. S K Maurya and M Govender, Eur. Phys. J. C 77, 347 (2017)

    Article  ADS  Google Scholar 

  95. S K Maurya, Y K Gupta, T T Smitha and F Rahaman, Eur. Phys. J. A 52, 191 (2016)

    Article  ADS  Google Scholar 

  96. S K Maurya, Y K Gupta, S Ray and B Dayanandan, Eur. Phys. J. C 75, 225 (2015)

    Article  ADS  Google Scholar 

  97. M K Jasim et al, Astrophys. Space Sci. 365, 9 (2020)

    Article  ADS  Google Scholar 

  98. K N Singh et al, Mod. Phys. Lett. A 32, 1750093 (2017)

    Article  ADS  Google Scholar 

  99. K N Singh, N Pradhan and N Pant, Pramana – J. Phys. 89, 23 (2017)

    Google Scholar 

  100. G Mustafa, X Tie-Cheng, M Ahmad and M F Shamir, Phys. Dark Universe 31, 100747 (2021)

    Article  Google Scholar 

  101. G Mustafa, X Tie-Cheng, M F Shamir and M Javed, Eur. Phys. J. Plus 136, 166 (2021)

    Article  Google Scholar 

  102. M F Shamir, G Mustafa and M Ahmad, Nucl. Phys. B 967, 115418 (2021)

    Article  Google Scholar 

  103. G Mustafa, M F Shamir and M Ahmad, Phys. Dark Universe 30, 100652 (2020)

    Article  Google Scholar 

  104. M Zubair, A Ditta and S Waheed, Eur. Phys. J. Plus 136, 508 (2021)

    Article  Google Scholar 

  105. R Saleem, F Karamat and M Zubair, Phys. Dark Universe 30, 100592 (2020)

    Article  Google Scholar 

  106. P Bhar, M Govender and R Sharma, Pramana – J. Phys. 90, 5 (2018)

    Google Scholar 

  107. S N Pandey and S P Sharma, Gen. Relativ. Gravit. 14, 113 (1981)

    Article  ADS  Google Scholar 

  108. W Israel, Nuovo Cimento B 44, 1 (1966)

    Article  ADS  Google Scholar 

  109. G Darmois, Mémorial des Sciences Mathematiques Gauthier-Villars, Paris, Fasc. 25 (1927)

  110. S K Maurya, B Mishra, S Ray and R Nag, Chin. Phys. C, https://doi.org/10.1088/1674-1137/ac7d45 (2022)

  111. K D Olum, Phys. Rev. Lett. 81, 3567 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  112. M Visser, B Bassett and S Liberat, Nucl. Phys. Proc. Suppl. 88, 267 (2000)

    Article  ADS  Google Scholar 

  113. R Schoen and S T Yau, Commun. Math. Phys. 65, 45 (1979)

    Article  ADS  Google Scholar 

  114. S W Hawking and G F R Ellis, The large scale structure of space-time (Cambridge University Press, England, 1973)

    Book  MATH  Google Scholar 

  115. H Heintzmann and W Hillebrandt, Astron. Astrophys. 38, 51(1975)

    ADS  Google Scholar 

  116. H Bondi, Mon. Not. R. Astron. Soc. 259, 365 (1992)

    Article  ADS  Google Scholar 

  117. R Chan, L Herrera and N O Santos, Class. Quantum Gravity 9, 133 (1992)

    Article  ADS  Google Scholar 

  118. R Chan, L Herrera and N O Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

  119. S Chandrasekhar, Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  120. S Chandrasekhar, Phys. Rev. Lett. 12, 1143 (1964)

    Article  Google Scholar 

  121. Ch C Moustakidis, Gen. Relativ. Gravit. 49, 68 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  122. L Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  123. H Abreu, H Hernández and L A Núñez, Class. Quantum Gravity 24, 4631 (2007)

    Article  ADS  Google Scholar 

  124. P B Demorest, T Pennucci, S M Ransom, M S E Roberts and J W T Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  125. M L Rawls et al, ApJ 730, 25 (2011)

    Article  ADS  Google Scholar 

  126. T Güver, P Wroblewski, L Camarota and F Özel, ApJ 719, 1807 (2010)

  127. P C C Freire et al, Mon. Not. R. Astron. Soc. 412, 2763 (2011)

  128. T Güver, F Özel, A Cabrera-Lavers and P Wroblewski, ApJ 712, 964 (2010)

    Article  ADS  Google Scholar 

  129. F Özel, T Guv̈er and D Psaltis, ApJ 693, 1775 (2009)

    Article  ADS  Google Scholar 

  130. P Elebert et al, Mon. Not. R. Astron. Soc. 395, 884 (2009)

    Article  ADS  Google Scholar 

  131. M K Abubekerov et al, Astron. Rep. 52, 379 (2008)

    Article  ADS  Google Scholar 

  132. B P Abbott et al, Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  133. N Straumann, General relativity and relativistic astrophysics (Springer, Berlin, 1984)

    Book  Google Scholar 

  134. S Karmakar, S Mukherjee, R Sharma and S D Maharaj, Pramana – J. Phys. 68, 881 (2007)

    Google Scholar 

  135. C G Böhmer and T Harko, Class. Quantum Gravity 23, 6479 (2006)

    Article  ADS  Google Scholar 

  136. D E Barraco, V H Hamity and R J Gleiser, Phys. Rev. D 67, 064003 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  137. B V Ivanov, Phys. Rev. D 65, 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge that this work is carried out under TRC Project (Grant No. BFP/RGP/CBS-/19/099), the Sultanate of Oman. SKM is thankful for the continuous support and encouragement from the administration of the University of Nizwa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Maurya.

Appendix

Appendix

$$\begin{aligned}{} & {} \theta _{11}(r)=-a^3 r^4 \\{} & {} \quad \times \left( B \sqrt{a r^2+1}\left( \beta (\alpha +1) \left( b r^2+3\right) \right. \right. \\{} & {} \quad \left. \left. -3 \left( b \alpha r^2+\alpha \right) \right) +A \left( \beta (\alpha +1) \left( br^2+3\right) \right. \right. \\{} & {} \quad \left. \left. -\alpha \left( b r^2+1\right) \right) \right) +a^2 r^2 \\{} & {} \quad \times \Big [B \sqrt{a r^2+1} \left( \beta \left( br^2+3\right) \left( \alpha \left( 2 b r^2-1\right) \right. \right. \\{} & {} \quad \left. \left. +br^2-2\right) +\left( b r^2+1\right) \left( b \gamma \alpha r^4+b \gamma r^4\right. \right. \\{} & {} \quad \left. \left. -6 b \alpha r^2+\gamma \alpha r^2+\gamma r^2+\alpha \right) \right) \\{} & {} \quad +A \left( \beta \left( br^2+3\right) \left( \alpha \left( 2 b r^2-1\right) +br^2-2\right) \right. \\{} & {} \quad \left. +\left( b r^2+1\right) \left( b \gamma \alpha r^4+b \gamma r^4-2 b \alpha r^2+\gamma \alpha r^2\right. \right. \\{} & {} \quad \left. \left. +\gamma r^2+\alpha \right) \right) \Big ],\\{} & {} \theta _{12}(r)= a \Big [B \sqrt{a r^2+1}\big (-\beta \big (b r^2+3\big )\\{} & {} \quad \times \big (b^2 \alpha r^4-2 b (\alpha +1)r^2+1\big )\\{} & {} \quad -\big (r^2 \big (b r^2+1\big ) \big (\gamma \big (b r^2+1\big )\big (b \alpha r^2-\alpha -2\big )\\{} & {} \quad +b \alpha \big (2-3 b r^2\big )\big )\big )\big ) \\{} & {} \quad +A \big \{-\beta \big (b r^2+3\big )\big (b^2 \alpha r^4-2 b (\alpha +1) r^2+1\big )\\{} & {} \quad -\big [r^2 \big (br^2+1\big ) \big (\gamma \big (b r^2+1\big ) \\{} & {} \quad +\big (b \alpha r^2-\alpha -2\big )+b \alpha \big (2-br^2\big )\big )\big ]\big \}\Big ]\\{} & {} \quad -\big (B \sqrt{a r^2+1}+A\big )\Big [b^3\alpha r^4 \big (\beta +\gamma r^2-1\big ) \\{} & {} \quad +b^2 r^2 \big (\beta (3\alpha -1)+2 \gamma \alpha r^2-\gamma r^2-\alpha \big ) \\{} & {} \quad +b \big (\gamma (\alpha -2)r^2-3\beta \big )-\gamma \Big ], \end{aligned}$$
$$\begin{aligned} A_1(R){} & {} =-b^3 \alpha ^2 R^4 \sqrt{a R^2+1} \left( \beta +\gamma R^2-1\right) \\{} & {} \quad +b \sqrt{a R^2+1} \left( 3 \beta \alpha -\gamma (\alpha -2) \alpha R^2+1\right) +\gamma \alpha \sqrt{a R^2+1},\\ A_2(R){} & {} =-\sqrt{a^2 \left( a R^2+1\right) \left( b R^2+1\right) ^2 \left( a^2 \left( \alpha ^2-1\right) R^4-2 a \left( b \alpha ^2 R^4+R^2\right) +b^2 \alpha ^2 R^4-1\right) ^2} \\{} & {} \quad -a^3 (\alpha +1) R^4 \sqrt{a R^2+1} \left( \alpha \left( b \beta R^2-2 b R^2+3 \beta -2\right) +2 b R^2+2\right) +b^2 R^2 \sqrt{a R^2+1}\\{} & {} \quad \times \left( \beta \left( \alpha -3 \alpha ^2\right) +\alpha ^2 \left( 1-2 \gamma R^2\right) +\gamma \alpha R^2+1\right) ,\\ A_3(R)= & {} a \sqrt{a R^2+1} \big [-\beta \alpha \left( b R^2+3\right) \left( b^2 \alpha R^4-2 b (\alpha +1) R^2+1\right) -\left( b R^2+1\right) \\{} & {} \quad \times \big (b^2 \alpha ^2 R^4 \left( \gamma R^2-2\right) -2 b R^2 (\gamma \alpha R^2 -\alpha ^2+1)-\gamma \alpha (\alpha +2) R^2+2\big )\big ], \end{aligned}$$
$$\begin{aligned}{} & {} A_4(R)=a^2 R^2 \sqrt{a R^2+1} \\{} & {} \quad \times \big [\beta \alpha \left( b R^2+3\right) \left( \alpha \left( 2 b R^2-1\right) +b R^2-2\right) \\{} & {} \quad +\left( b R^2+1\right) \big (\alpha ^2 \left( b \gamma R^4-4 b R^2+\gamma R^2+1\right) \\{} & {} \quad +\gamma \alpha R^2 \left( b R^2+1\right) +b R^2-4\big )\big ],\\{} & {} A_5(R)=a^2 (\alpha +1) R^2 \\{} & {} \quad \left( \alpha \left( \beta \left( b R^2+3\right) -b R^2-1\right) +b R^2+1\right) \\{} & {} \quad +b^3 \alpha ^2 R^4 \left( \beta +\gamma R^2-1\right) +b^2 R^2 \big (\beta (3 \alpha -1) \alpha \\{} & {} \quad +\alpha ^2 \left( 2 \gamma R^2-1\right) -\gamma \alpha R^2-1\big )\\{} & {} \quad +b \left( -3 \beta \alpha +\gamma (\alpha -2) \alpha R^2-1\right) -\gamma \alpha ,\\{} & {} A_6(R)=-a \left( \beta \alpha \left( b R^2+3\right) \left( b (2 \alpha +1) R^2-1\right) \right. \\{} & {} \quad \left. +\left( b R^2+1\right) \left( b R^2 \left( \alpha ^2 \left( \gamma R^2-2\right) +\gamma \alpha R^2+1\right) \right. \right. \\{} & {} \quad \left. \left. +\gamma \alpha (\alpha +1) R^2-1\right) \right) ,\\{} & {} B_1(R)=\ln \left( a R^2+1\right) \Big [\frac{b \gamma }{a^2}\\{} & {} \quad +\frac{\frac{2 b}{a}-2}{\left( \frac{A}{B} \right) ^2}-\frac{b (\beta -1)+\gamma }{a}+3 \beta -1\Big ]\\{} & {} \quad +\frac{B^2}{a^2 A^2}\Bigg \{\frac{A}{B} \left( \frac{4 a (b-a)}{\sqrt{a R^2+1}}-\frac{A}{B} b \gamma \left( a R^2+1\right) \right) \\{} & {} \quad -4 a \left[ \left( \frac{A}{B} \right) ^2-1\right] (a-b) \log \left( \sqrt{a R^2+1}+\frac{A}{B} \right) \Bigg \}\\{} & {} \quad -2 \beta \ln \left( a b R^2+a\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Hadhrami, M., Maurya, S.K., Al Amri, Z. et al. Spherically symmetric Buchdahl-type model via extended gravitational decoupling. Pramana - J Phys 97, 13 (2023). https://doi.org/10.1007/s12043-022-02486-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02486-w

Keywords

PACS Nos

Navigation