Skip to main content
Log in

New optical soliton solutions of Biswas–Arshed equation using the generalised exponential rational function approach and Kudryashov’s simplest equation approach

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper studies the optical soliton solutions of the Biswas–Arshed equation with the help of two different techniques, such as the generalised exponential rational function (GERF) technique and Kudryashov’s simplest equation technique. The GERF technique extracts distinct families of exact solitary wave solutions involving trigonometric function solutions, hyperbolic function solutions, rational function solutions, etc. After that, we apply Kudryashov’s simplest equation method in the context of Bernoulli and Riccati equations to attain different kinds of families of exact soliton solutions. All the acquired solutions of the equation have numerous applications in many branches of nonlinear sciences such as plasma physics, superconductivity, nonlinear optics, biophysics, star formation, quantum mechanics, etc. and many more connected fields of nonlinear wave sciences. The exact solitary wave solutions obtained by GERF technique and Kudryashov’s simplest equation technique are in more generalised form as they contained several arbitrary parameters. Subsequently, to understand the behaviour of deduced solutions, we graphically discuss the real part, imaginary part and modulus of these solutions by suitable choice of involved arbitrary parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B Ghanbari, H Günerhan and H M Srivastava, Chaos Solitons Fractals 138, 109901 (2020)

    Google Scholar 

  2. S K Dhiman, S Kumar and H Kharbanda, Mod. Phys. Lett. B 35(34), 2150528 (2021)

    Article  ADS  Google Scholar 

  3. S Kumar, S K Dhiman, S Kumar and A Chauhan, Math. Comput. Simul. 196 319 (2022)

    Article  Google Scholar 

  4. S Kumar, Pramana – J. Phys. 95, 1 (2021)

    Google Scholar 

  5. S Kumar and M Niwas, Pramana – J. Phys. 95, 1 (2021)

    Article  ADS  Google Scholar 

  6. S Kumar and N Mann, J. Ocean Eng. Sci., https://doi.org/10.1016/j.joes.2022.04.007(2022)

  7. A J M Jawad, Stud. Math. Sci. 5(2), 13 (2012)

    Google Scholar 

  8. Sirendaoreji, Nonlinear Dynam. 89(1), 333 (2017)

    Article  MathSciNet  Google Scholar 

  9. E M E Zayed and K A E Alurrfi, Optik 127(20), 9131 (2016)

    Article  ADS  Google Scholar 

  10. M Niwas, S Kumar and H Kharbanda, J. Ocean Eng. Sci., https://doi.org/10.1016/j.joes.2021.08.002(2021)

  11. S Kumar, K S Nasar and A Kumar, Results Phys. 28(5), 104621 (2021)

    Article  Google Scholar 

  12. Z Pinar, H Rezazadeh and M Eslami, Opt. Quantum Electron. 52, 504 (2020)

    Article  Google Scholar 

  13. M Ekici, A Sonmezoglu, Q Zhou, S P Moshokoa, M Z Ullah, A H Arnous and M Belic, Opt. Quantum Electron. 50(2), 75 (2018)

    Article  Google Scholar 

  14. F Ali, E Mehmet and S Abdullah, The Sci. World J. 2014, 534063 (2014)

  15. M Foroutan, J Manafian and A Ranjbaran, Optik 162, 86 (2018)

    Article  ADS  Google Scholar 

  16. M Foroutan, J Manafian and I Zamanpour, Optik 164, 371 (2018)

  17. H Günerhan, Hindawi Math. Probl. Eng. 2020, 5926836 (2020)

  18. A Biswas and S Arshed, Optik 174, 452 (2018)

    Article  ADS  Google Scholar 

  19. AI Aliyu, M Inc, A Yusuf, D Baleanu and M Bayram, Front. Phys. 7(28), https://doi.org/10.3389/fphy.2019.00028 (2019)

  20. J Sabi’u, H Rezazadeh, H Tariq and A Bekir, Mod. Phys. Lett. B 33(25), 1950308 (2019)

    Article  ADS  Google Scholar 

  21. M Ekici and A Sonmezoglu, optik 177, 13 (2019)

    Article  ADS  Google Scholar 

  22. Y Yildirim, Optik 182, 810 (2019)

    Article  ADS  Google Scholar 

  23. K Hosseini, M Mirzazadeh, M Ilie and J F Gomez-Aguilar, Optik 217, 164801 (2020)

    Article  ADS  Google Scholar 

  24. M Tahir and A U Awan, Pramana – J. Phys. 94, 29 (2020)

    Article  ADS  Google Scholar 

  25. W R Xu, L F Guo and C Y Wang, Mod. Phys. Lett. B 35(2), 2150051 (2021)

    Article  ADS  Google Scholar 

  26. B Ghanbari and M Inc, Eur. Phys. J. Plus 133, 142 (2018)

    Article  Google Scholar 

  27. S Kumar S M Niwas and N Mann, Dyn. Partial Differ. Equ. 4, 100200 (2021)

    Google Scholar 

  28. S Kumar, M Niwas and S K Dhiman, J. Ocean Eng. Sci., https://doi.org/10.1016/j.joes.2021.10.009 (2021)

  29. S Kumar, A Kumar and A M Wazwaz, The Eur. Phys. J. Plus 135, 870 (2020)

    Article  Google Scholar 

  30. H Günerhan, Rev. Mex. de Fis. 67, 060702 (2021)

    Google Scholar 

  31. H M Srivastava, H Günerhan and B Ghanbari, https://doi.org/10.1002/mma.5827 (2019)

  32. B Ghanbari, H Günerhan and S Momani, Phys. Scr. 95, 105208 (2020)

    Article  ADS  Google Scholar 

  33. Y Yıldırım and E Yaşar, Chaos Solitons Fractals 146 (2018)

Download references

Acknowledgements

The Science and Engineering Research Board, SERB-DST, India is funding this research through theMATRICS project scheme (MTR/2020/000531). Sachin Kumar, the author, has been awarded this research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Niwas, M. New optical soliton solutions of Biswas–Arshed equation using the generalised exponential rational function approach and Kudryashov’s simplest equation approach. Pramana - J Phys 96, 204 (2022). https://doi.org/10.1007/s12043-022-02450-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02450-8

Keywords

PACS Nos

Navigation