Skip to main content
Log in

New soliton solutions of Heisenberg ferromagnetic spin chain model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the given research, our main goal is to explore new soliton solutions in \((2+1)\)-dimensional Heisenberg ferromagnetic spin chain (HFSC) equation. This was achieved via the extended \(( G'/G2 )\)-expansion method. For this, we first analyse the given \((2+1)\)-dimensional HFSC system of a partial differential equation (PDE) that is obtained by separating the equation into real and imaginary parts. The solution of our equation is determined as rapidly convergent sequences effectively computed by using Mathematica software. Furthermore, a special class of nonlinear wave solutions like periodic, straight, decreasing, dark-singular soliton and dark bright singular soliton were obtained in Heisenberg ferromagnetic dynamics. The amplitude of the soliton is determined by giving different values of parameters. With a suitable choice of parameters, 3D and 2D graphical illustrations are reported. The methodology applied is effective for obtaining exact solutions for various fractional partial differential equations in complex medium. The numerical module of the results obtained is studied, with fascinating figures showing the physical significance of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A Ali, A R Seadawy and D Lu, Open Phys. 16(1), 219 (2018)

    Article  Google Scholar 

  2. A R Seadawy, Eur. Phys. J. Plus.130(9), 182 (2015)

    Article  Google Scholar 

  3. A R Seadawy, Optik 31, 139 (2017)

    MathSciNet  Google Scholar 

  4. S Bhatter, A Mathur, D Kumar, K S Nisar and J Singh, Chaos Solitons Fractals 131, 109508 (2020)

    Article  MathSciNet  Google Scholar 

  5. S Kumar, R Kumar, J Singh, K S Nisar and D Kumar, Alex. Eng. J. 59, 2053 (2020)

    Article  Google Scholar 

  6. M S Osman and A M Wazwaz, Appl. Math. Comput. 289, 321 (2018)

    Google Scholar 

  7. K Hosseini and R Ansari, Waves Random Complex Media 27, 628 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. S Sahoo and S S Ray, Comput. Math. Appl. 70(2), 158 (2015)

    Article  MathSciNet  Google Scholar 

  9. J Biazar and Z Ayati, J. King Saud Univ. Sci. 24, 315 (2012)

    Article  Google Scholar 

  10. Z Jin-Ming and Z Yao-Ming, Chin. Phys. B 20, 010205 (2011)

    Article  Google Scholar 

  11. M Kaplan, A Bekir and A Akbulut, Nonlinear Dyn. 85, 2843 (2016)

    Article  Google Scholar 

  12. B Li, Y Chen and H Zhang, Phys. Lett. A 305, 377 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. E Fan, Phys. Lett. A 212, 277 (2000)

    Google Scholar 

  14. G Akram and F Batool, Opt. Quant. Elect. 14, 49 (2017)

    Google Scholar 

  15. M Mirzazadeh, Pramana – J. Phys. 85, 17 (2015)

    Google Scholar 

  16. M Mirzazadeh, M Eslami and A Biswas, Pramana – J. Phys. 82, 465 (2014)

    Google Scholar 

  17. I Podlubny, Fractional differential equation (Academic Press, San Diego, CA, USA, 1999)

    MATH  Google Scholar 

  18. O Guner and A Bekir, Int. J. Biomath. 8, 1550003 (2015)

    Article  MathSciNet  Google Scholar 

  19. S Kenneth, Miller and B Ross, An introduction to the fractional calculus and fractional differential equations, Large volume asymptotics of Brownian integrals and orbital magnetism (Wiley, 1993)

  20. A A Kilbas, H M Srivastava and J J Trujillo (Elsevier, 2006)

  21. A M El-Sayed and M Gaber, Phys. Lett. A 359, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. T M Atanacković, S Konjik and S Pilipović, J. Phys. A 41, 095201 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. I Karatzas, Springer-Verlag, New York, MR917065 (1988)

  24. S N Sharma, Diff. Equ. Dyn. Syst. 16, 351 (2008)

    Article  Google Scholar 

  25. C Nasim and B D Aggarwala, Proc. Edinburgh Math. Soc. 27 (1984)

  26. S Sokhal and S R Verma, Appl. Math. Comput. 388, 125480 (2021)

    Google Scholar 

  27. H Jafari, C M Khalique and M Nazari, Appl. Math. Lett. 24, 1795 (2011)

    Article  MathSciNet  Google Scholar 

  28. D Furihata and T Matsuo (CRC Press, 2010)

  29. D B Stein, R D Guy and B Thomases, J. Comput. Phys. 304, 252 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. S Kumar, A Kumar, S Abbas, M Al Qurashi and D Baleanu, Adv. Diff. Eqs. 2020, 28 (2020)

    Google Scholar 

  31. M Younis, N Cheemaa, S A Mahmood and S T Rizvi, Opt. Quant. Elect. 48(12), 542 (2016)

    Article  Google Scholar 

  32. M S Osman, A Korkmaz, H Rezazadeh, M Mirzazadeh, M Eslami and Q Zhou, Chin. J. Phys. 56(5), 2500 (2018)

    Article  Google Scholar 

  33. A Biswas, Q Zhou, H Triki, M Z Ullah, M Asma, S P Moshokoa and M Belic, J. Mod. Opt. 65(2), 179 (2018)

    Article  ADS  Google Scholar 

  34. H Triki, Q Zhou and W Liu, Laser Phys. 29(5), 055401 (2019)

    Article  ADS  Google Scholar 

  35. S Arshed, A Biswas, M Abdelaty, Q Zhou, S P Moshokoa and M Belic, Chin. J. Phys. 56(6), 2879 (2018)

    Article  Google Scholar 

  36. G F Yu, Z W Xu, J Hu and H Q Zhao, Commun. Nonlinear Sci. Numerical Simul. 47, 178 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. E M Zayed and A G Al-Nowehy, J. Assoc. Arab Univ. Basic Appl. Sci. 24, 184 (2017)

    Google Scholar 

  38. C Q Dai, Y Fan, Y Y Wang and J Zheng, The Eur. Phys. J. Plus 133(2), 1 (2018)

    Article  Google Scholar 

  39. J J Su and Y T Gao, Superlatt. Microstruct. 120, 697 (2018)

  40. Y Hu and Q Zhu, Nonlinear Dyn. 89(1), 225 (2017)

    Article  Google Scholar 

  41. M S Osman, K U Tariq, A Bekir, A Elmoasry, N S Elazab, M Younis and M Abdel-Aty, Commun. Theor. Phys. 72(3), 035002 (2020)

    Article  ADS  Google Scholar 

  42. X Y Gao, EPL 110, 15002 (2015)

    Article  ADS  Google Scholar 

  43. C C Vasanthi and M M Latha, Commun. Nonlinear Sci. Numer. Simul. 28(1–3), 109 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  44. M Rani, N Ahmed, S S Dragomir and S T Mohyud-Din, Phys. Scr. (2021)

    Google Scholar 

  45. C Yang, Q Zhou, H Triki, M Mirzazadeh, M Ekici, W J Liu, A Biswas and M Belic, Nonlinear Dyn. 95(2), 983 (2019)

    Article  Google Scholar 

  46. M M Latha and T Anitha, Phys. B: Condensed Matter 479, 149 (2015)

    Article  ADS  Google Scholar 

  47. Q M Wang, Y T Gao, C Q Su, B Q Mao, Z Gao and J W Yang, Ann. Phys. 363, 440 (2015)

    Article  ADS  Google Scholar 

  48. Z P Shi, G Huang and R Tao, Phys. Rev. B 42(1), 747 (1990)

    Article  ADS  Google Scholar 

  49. G Huang, Z P Shi, X Dai and R Tao, Phys. Rev. B 43(13), 11197 (1991)

    Article  ADS  Google Scholar 

  50. M Daniel, L Kavitha and R Amuda, Phys. Rev. B 59, 13774 (1995)

    Article  ADS  Google Scholar 

  51. L Kavitha and M Daniel, J. Phys. A 36, 10471 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisar, K.S., Inc, M., Jhangeer, A. et al. New soliton solutions of Heisenberg ferromagnetic spin chain model. Pramana - J Phys 96, 28 (2022). https://doi.org/10.1007/s12043-021-02266-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02266-y

Keywords

PACS Nos

Navigation