Skip to main content
Log in

Porosity effects on the peristaltic flow of biological fluid in a complex wavy channel

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Peristalsis is the most dynamic phenomenon that is significant in the biomedical domain and offers considerable promise in microscale fluids. For the past few years, this biomimetic (peristaltic) phenomenon attracted the attention of the research community because of its massive applications in numerous medical and industrial domains. In the present study, the steady, laminar rheology of biological fluid from a biomimetic (peristaltic) channel is considered. The rheological equations are expressed in the Cartesian system, and the porosity effects are modelled (added) on a body force term of the momentum equation. The current analysis depends on the creeping phenomena and long wavelength. The closed-form solutions are acquired by using integration on the rheological equations subject to suitable boundary conditions. The rheology is controlled by two embedded parameters, the porosity and non-Newtonian parameters. It is shown using graphs that the magnitude of axial velocity is strongly affected by the larger strength of porosity (Darcy’s number) and non-Newtonian (couple stress) parameters. We noticed the impacts of involved rheological constraints on pumping and trapping phenomena in the light of porous effects. Additionally, the wavy pattern of sinusoidal waves is utilised in the present analysis to increase the efficiency of the peristaltic pump. By increasing the porosity impacts, the magnitudes of velocity profile and pressure gradient of a biofluid are increased. The porosity has a dynamic role in the augmentation of peristaltic pumping. The impacts of couple stress parameter reduces the viscous effects. These outcomes may be useful in bioengineering (drug delivery schemes) and chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y Fung and C Yih, J. Appl. Mech. ASME 35, 669 (1968)

    Article  ADS  Google Scholar 

  2. A H Shapiro, M Y Jaffrin and S L Weinberg, J. Fluid Mech. 37, 799 (1969)

    Article  ADS  Google Scholar 

  3. W Bayliss and E H Starling, J. Physiol. 26, 125 (1901)

    Article  Google Scholar 

  4. B Gupta and V Seshadri, J. Biomech. 9, 105 (1976)

    Article  Google Scholar 

  5. T Hayat, Q Hussain and N Ali, Physica A 387, 3399 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. T Hayat and N Ali, Physica A 370, 225 (2006)

    Article  ADS  Google Scholar 

  7. M Kothandapani and S Srinivas, Int. J. Non Linear Mech. 43, 915 (2008)

    Article  ADS  Google Scholar 

  8. T Hayat, N Ali and S Asghar, Phys. Lett. A 363, 397 (2007)

    Article  ADS  Google Scholar 

  9. D Tripathi, Math. Comput. Model. 57, 1270 (2013)

    Article  Google Scholar 

  10. T Hayat, N Ali and S Asghar, Acta Mech. 193, 101 (2007)

    Article  Google Scholar 

  11. D Tripathi and O A Bég, Math. Biosci. 248, 67 (2014)

    Article  MathSciNet  Google Scholar 

  12. M Khan and T Hayat, Nonlinear Anal. Real World Appl. 9, 1952 (2008)

    Article  MathSciNet  Google Scholar 

  13. N Ali, Y Wang, T Hayat and M Oberlack, Biorheology 45, 611 (2008)

    Article  Google Scholar 

  14. N Ali, M Sajid, Z Abbas and T Javed, Eur. J. Mech. B Fluids 29, 387 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. K Javid, N Ali and M Sajid, Meccanica 51, 87 (2016)

    Article  MathSciNet  Google Scholar 

  16. K Javid, N Ali and Z Asghar, J. Braz. Soc. Mech. Sci. Eng. 41, 1 (2019)

    Article  Google Scholar 

  17. K S Mekheimer and T Al-Arabi, Int. J. Math. Sci. 2003, 1663 (2003)

    Article  Google Scholar 

  18. T Hayat, S Hina and N Ali, Numer. Meth. Partial Differ. Equ. 26, 1099 (2010)

    Google Scholar 

  19. A Riaz, A U Awan, S Hussain, S U Khan and K A Abro, J. Therm. Anal. Calorim.https://doi.org/10.1007/s10973-020-10447-x (2021)

  20. H Vaidya, R Choudhari, F Mebarek-Oudina, I L Animasaun, K V Prasad and O D Makinde, Heat Transf. 50, 2592 (2021)

    Article  Google Scholar 

  21. D Tripathi, R Jhorar, O A Bég and A Kadir, J. Mol. Liq. 236, 358 (2017)

    Article  Google Scholar 

  22. D Tripathi, A Sharma and O A Bég, Adv. Powder Technol. 29, 639 (2018)

    Article  Google Scholar 

  23. K Javid, N Ali and Z Asghar, Phys. Scr. 94, 115226 (2019)

    Article  ADS  Google Scholar 

  24. J Prakash, A Sharma and D Tripathi, Pramana – J. Phys. 94, 1 (2020)

  25. J Prakash, D Tripathi and O A Bég, Appl. Nanosci. 10, 1693 (2020)

    Article  ADS  Google Scholar 

  26. K Ramesh, D Tripathi, O A Bég and A Kadir, Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 675 (2019)

    Article  Google Scholar 

  27. J Prakash, E Siva, D Tripathi and O A Bég, Heat Transf. Asian Res. 48, 2882 (2019)

    Article  Google Scholar 

  28. N S Akbar, A W Butt, D Tripathi and O A Bég, Pramana – J. Phys. 88, 52 (2017)

    Article  ADS  Google Scholar 

  29. S Noreen, Quratulain and D Tripathi, Therm. Sci. Eng. Prog. 11, 254 (2019)

    Article  Google Scholar 

  30. J Prakash, A Yadav, D Tripathi and A K Tiwari, Eur. Phys. J. Plus 134, 1 (2019)

    Article  Google Scholar 

  31. D Tripathi, S Bhushan, O A Bég and N S Akbar, J. Hydrodynam. B 30, 1001 (2018)

    Article  ADS  Google Scholar 

  32. D Tripathi, R Jhorar, A Borode and O A Bég, Eur. J. Mech. B Fluids 72, 391 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. V Narla and D Tripathi, Microvasc. Res. 123, 25 (2019)

    Article  Google Scholar 

  34. V K Narla, D Tripathi and O A Bég, J. Biomech. Eng. 141, 021003 (2019)

    Article  Google Scholar 

  35. V Narla, D Tripathi and G R Sekhar, J. Eng. Math. 114, 177 (2019)

    Article  Google Scholar 

  36. K Takeuchi and H Satoh, Digestion 91, 218 (2015)

    Article  Google Scholar 

  37. V K Stokes, Theories of fluids with microstructure: An introduction (Springer, NY, 2012)

  38. D J Griffiths (2005)

  39. T Hayat, M Iqbal, H Yasmin, F E Alsaadi and H Gao, Pramana – J. Phys. 85, 125 (2015)

    Article  ADS  Google Scholar 

  40. N Ali, Z Asghar, O A Bég and M Sajid, J. Theor. Biol. 397, 22 (2016)

    Article  ADS  Google Scholar 

  41. Z Asghar, N Ali and M Sajid, Math. Biosci. 290, 31 (2017)

    Article  MathSciNet  Google Scholar 

  42. Z Asghar, N Ali, O A Bég and T. Javed, Results Phys. 9, 682 (2018)

    Article  ADS  Google Scholar 

  43. Z Asghar, N Ali and M Sajid, J. Braz. Soc. Mech. Sci. Eng. 40, 475 (2018)

    Article  Google Scholar 

  44. Z Asghar, N Ali and M Sajid, Eur. Phys. J. Plus 134, 9 (2019)

    Article  Google Scholar 

  45. Z Asghar and N Ali, Can. J. Phys. 97, 537 (2019)

    Article  ADS  Google Scholar 

  46. Z Asghar, N Ali, M Sajid and O A Bég, J. Magn. Magn. Mater. 486, 165283 (2019)

    Article  Google Scholar 

  47. N Ali, Z Asghar, M Sajid and F Abbas, Physica A 535, 122435 (2019)

    Article  MathSciNet  Google Scholar 

  48. Z Asghar, N Ali, R Ahmed, M Waqas and W A Khan, Comput. Meth. Prog. Biomed. 182, 105040 (2019)

    Article  Google Scholar 

  49. N Ali, Z Asghar, M Sajid and O A Bég, J. Braz. Soc. Mech. Sci. Eng. 41, 446 (2019)

    Article  Google Scholar 

  50. Z Asghar, N Ali, M Waqas and M A Javed, Comput. Math. Appl. 79, 2189 (2020)

    Article  MathSciNet  Google Scholar 

  51. Z Asghar, K Javid, M Waqas, A Ghaffari and W A Khan, Fluid Dyn. Res. 52, 015514 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  52. Z Asghar, N Ali, K Javid, M Waqas, A S Dogonchi and W A Khan, Comput. Meth. Prog. Biomed. 189, 105313 (2020)

    Article  Google Scholar 

  53. Z Asghar, N Ali, M Waqas, M Nazeer and W A Khan, Biomech. Model. Mechanobiol. 19, 2271 (2020)

    Article  Google Scholar 

  54. Z Asghar, N Ali, K Javid, M Waqas and W A Khan, Eur. Phys. J. Plus 136, 1 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javid, K., Asghar, Z., Saeed, U. et al. Porosity effects on the peristaltic flow of biological fluid in a complex wavy channel. Pramana - J Phys 96, 2 (2022). https://doi.org/10.1007/s12043-021-02241-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02241-7

Keywords

PACS No

Navigation